Difference between revisions of "Aufgaben:Exercise 5.3: Mean Square Error"

From LNTwww
Line 51: Line 51:
 
  \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
 
  \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
  
The resulting MSE values are given in the graph above, valid for  $N = 512$  as well as for
+
The resulting MQF values are given in the graph above, valid for  $N = 512$  as well as for
 
*$f_{\rm A} \cdot T = 1/4$,  
 
*$f_{\rm A} \cdot T = 1/4$,  
 
*$f_{\rm A} \cdot T = 1/8$,  
 
*$f_{\rm A} \cdot T = 1/8$,  
Line 82: Line 82:
 
$T_{\rm A}/T\ = \ $ { 0.01562 3% }
 
$T_{\rm A}/T\ = \ $ { 0.01562 3% }
  
{Due to which effects does the MSE value for the Gaussian pulse increase when using    $f_{\rm A} \cdot T = 1/4$  instead of  $f_{\rm A} \cdot T = 1/8$  verwendet?
+
{Due to which effects does the MQF value for the Gaussian pulse increase when using    $f_{\rm A} \cdot T = 1/4$  instead of  $f_{\rm A} \cdot T = 1/8$  verwendet?
 
|type="()"}
 
|type="()"}
 
+ The truncation error is significantly increased.
 
+ The truncation error is significantly increased.
 
- The aliasing error is significantly increased.
 
- The aliasing error is significantly increased.
  
{Due to what effects does the MSE value for the Gaussian momentum increase when using  $f_{\rm A} \cdot T = 1/16$  instead of  $f_{\rm A} \cdot T = 1/4$  verwendet?
+
{Due to what effects does the MQF value for the Gaussian momentum increase when using  $f_{\rm A} \cdot T = 1/16$  instead of  $f_{\rm A} \cdot T = 1/4$  verwendet?
 
|type="()"}
 
|type="()"}
 
- The termination error is significantly increased.termination
 
- The termination error is significantly increased.termination
Line 121: Line 121:
 
'''(3)'''&nbsp; Correct is the <u>proposed solution 1 &nbsp; &rArr; &nbsp;  increase of the termination error</u>:
 
'''(3)'''&nbsp; Correct is the <u>proposed solution 1 &nbsp; &rArr; &nbsp;  increase of the termination error</u>:
 
*This measure simultaneously halves&nbsp; $T_{\rm P}$&nbsp; from&nbsp; $8T$&nbsp; to&nbsp; $4T$&nbsp;.*Thus, only samples in the range&nbsp; $–2T \leq t < 2T$, are taken into account, which increases the termination error.  
 
*This measure simultaneously halves&nbsp; $T_{\rm P}$&nbsp; from&nbsp; $8T$&nbsp; to&nbsp; $4T$&nbsp;.*Thus, only samples in the range&nbsp; $–2T \leq t < 2T$, are taken into account, which increases the termination error.  
*The mean square error&nbsp; $(\rm MQF)$&nbsp; steigt dadurch beim Gaußimpuls&nbsp; $x_1(t)$&nbsp; von&nbsp; $0.15 \cdot 10^{-15}$&nbsp; auf&nbsp; $8 \cdot 10^{-15}$, obwohl der Aliasingfehler durch diese Maßnahme sogar etwas kleiner wird.
+
*The mean square error&nbsp; $(\rm MQF)$&nbsp; increases from&nbsp; $0.15 \cdot 10^{-15}$&nbsp; to&nbsp; $8 \cdot 10^{-15}$ for the Gaussian pulse&nbsp; $x_1(t)$&nbsp;, although the aliasing error actually decreases slightly by this measure.
  
  
  
'''(4)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2 &nbsp; &rArr; &nbsp;  Erhöhung des Aliasingfehlers</u>:
+
'''(4)'''&nbsp; Correct is the <u>proposed solution 2 &nbsp; &rArr; &nbsp;  increase of the aliasing error:</u>:
*Durch die Halbierung von&nbsp; $f_{\rm A}$&nbsp; wird auch&nbsp; $f_{\rm P}$&nbsp; halbiert.  
+
*By halving&nbsp; $f_{\rm A}$&nbsp; wird auch&nbsp; $f_{\rm P}$&nbsp; is also halved.  
*Dadurch wird der Aliasingfehler etwas größer bei gleichzeitig kleinerem Abbruchfehler.  
+
*As a result, the aliasing error becomes somewhat larger with a smaller termination error at the same time.  
*Insgesamt steigt beim Gaußimpuls&nbsp; $x_1(t)$&nbsp; der mittlere quadratische Fehler&nbsp; $(\rm MQF)$&nbsp; von&nbsp; $1.5 \cdot 10^{-16}$&nbsp; auf&nbsp; $3.3 \cdot 10^{-16}$.
+
*Overall, for the Gaussian pulse&nbsp; $x_1(t)$&nbsp;, the mean square error&nbsp; $(\rm MQF)$&nbsp; increases from&nbsp; $1.5 \cdot 10^{-16}$&nbsp; to&nbsp; $3.3 \cdot 10^{-16}$.
  
  
  
'''(5)'''&nbsp; Richtig sind die <u> Lösungsvorschläge 1 und 2</u>:
+
'''(5)'''&nbsp; <u>Proposed solutions 1 and 2</u> are correct:
*Wie aus der Grafik zu ersehen ist, trifft die letzte Aussage nicht zu im Gegensatz zu den ersten beiden.  
+
*As can be seen from the graph, the last statement is not true in contrast to the first two.  
*Aufgrund des langsamen,&nbsp; $\rm si$–förmigen Abfalls der Spektralfunktion dominiert der Aliasingfehler.  
+
*Due to the slow,&nbsp; $\rm si$–shaped decay of the spectral function, the aliasing error dominates.  
*Der&nbsp; $\rm MQF$–Wert ist bei&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp; mit&nbsp; $1.4 \cdot 10^{-5}$&nbsp; deshalb deutlich größer als beim Gaußimpuls&nbsp; $(1.5 \cdot 10^{-16})$.
+
*The&nbsp; $\rm MQF$ value at&nbsp; $f_{\rm A} \cdot T = 1/8$&nbsp; with&nbsp; $1.4 \cdot 10^{-5}$&nbsp; is therefore significantly larger than for the Gaussian pulse&nbsp; $(1.5 \cdot 10^{-16})$.
  
  
  
'''(6)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>:
+
'''(6)'''&nbsp;  <u>Proposed solution 3</u> is correct:
*Die Spektralfunktion&nbsp; $X_3(f)$&nbsp; hat hier einen rechteckförmigen Vorlauf, so dass die beiden ersten Aussagen nicht zutreffen.  
+
*The spectral function&nbsp; $X_3(f)$&nbsp; here has a rectangular lead, so that the first two statements do not apply.  
*Dagegen ist bei dieser&nbsp; $\rm si$–förmigen Zeitfunktion ein Abbruchfehler unvermeidbar. Dieser führt zu den angegebenen großen&nbsp; $\rm MQF$–Werten.  
+
*On the other hand, a termination error is unavoidable with this&nbsp; $\rm si$–shaped time function. This leads to the large&nbsp; $\rm MQF$ values given.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
 
[[Category:Exercises for Signal Representation|^5.3 Possible DFT Errors^]]
 
[[Category:Exercises for Signal Representation|^5.3 Possible DFT Errors^]]

Revision as of 13:45, 22 March 2021

Gaussian pulse, square pulse, sinc pulse and some parameters

We consider three pulse-like signals, namely

  • Gaussian pulse  with amplitude  $A$  and equivalent duration  $T$:
$$x_1(t) = A \cdot {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm},$$
  • Rectangular pulse  $x_2(t)$  with amplitude  $A$  and (equivalent) duration  $T$:
$$x_2(t) = \left\{ \begin{array}{c} A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |t| < T/2 \hspace{0.05cm}, \\ |t| > T/2 \hspace{0.05cm}, \\ \end{array}$$
  • a so called  Sinc pulse  according to the following definition:
$$x_3(t) = A \cdot {\rm si}(\pi \cdot t/ T) ,\hspace{0.15cm}{\rm si}(x) = \sin(x)/x\hspace{0.05cm}.$$

Let the signal parameters be  $A = 1\ {\rm V}$  and  $T = 1\ {\rm ms}$ in each case.

The conventional  Fourier Transform  leads to the following spectral functions:

  • $X_1(f)$  is also Gaussian,
  • $X_2(f)$  runs according to the  $\rm si$–function,
  • $X_3(f)$  is constant for  $|f| < 1/(2 T)$  and outside zero.


For all spectral functions,  $X(f = 0) = A \cdot T$.

If the discrete-frequency spectrum is determined by the  Discrete Fourier Transform(DFT)  with the DFT parameters

  • $N = 512$   ⇒   number of samples considered in the time and frequency domain,*$f_{\rm A}$   ⇒   interpolation distance in the frequency domain,


this will lead to distortions due to truncation and/or aliasing errors.


The other DFT parameters are clearly fixed withn&bsp; $N$  uan  $f_{\rm A}$  .The following applies to these:

$$f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm P}/N \hspace{0.05cm}.$$

The accuracy of the respective DFT approximation is captured by thenbsp; mean square error  (MSE, here MQF):

$${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$

The resulting MQF values are given in the graph above, valid for  $N = 512$  as well as for

  • $f_{\rm A} \cdot T = 1/4$,
  • $f_{\rm A} \cdot T = 1/8$,
  • $f_{\rm A} \cdot T = 1/16$.





Hints:



Questions

1

Which range  $|f| \leq f_{\text{max}}$  is covered with  $N = 512$  and  $f_{\rm A} \cdot T = 1/8$ ?

$f_{\text{max}} \cdot T\ = \ $

2

At what time interval  $T_{\rm A}$  are the sampled values of  $x(t)$  available?

$T_{\rm A}/T\ = \ $

3

Due to which effects does the MQF value for the Gaussian pulse increase when using   $f_{\rm A} \cdot T = 1/4$  instead of  $f_{\rm A} \cdot T = 1/8$  verwendet?

The truncation error is significantly increased.
The aliasing error is significantly increased.

4

Due to what effects does the MQF value for the Gaussian momentum increase when using  $f_{\rm A} \cdot T = 1/16$  instead of $f_{\rm A} \cdot T = 1/4$  verwendet?

The termination error is significantly increased.termination
The aliasing error is significantly increased.

5

Compare the MQF(MSE) values of the rectangular pulse  $x_2(t)$  with those of the Gaussian pulse  $x_1(t)$. Which of the following statements are true?

$\rm MQF$  becomes larger because the spectral function  $X_2(f)$  decays asymptotically slower than  $X_1(f)$.
The aliasing error dominates.
The termination error dominates.

6

Compare the MQF values of the slit pulse  $x_3(t)$  with those of the Gaussian pulse  $x_1(t)$. Which of the following statements are true?

$\rm MQF$  becomes larger because the spectral function  $X_3(f)$  decays asymptotically slower than  $X_1(f)$.
The aliasing error dominates.
The termination error dominates.


Solution

(1)  With the DFT parameters  $N = 512$  and  $f_{\rm A} \cdot T = 1/8$  the following follows after multiplying the two quantities:

$$f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.$$
  • This covers the frequency range  $–f_{\rm P}/2 \leq f < f_{\rm P}/2$ :
$$f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.$$


(2)  The periodisation of the time function is based on the parameter  $T_{\rm P} = 1/f_{\rm A} = 8T$.

  • The distance between two samples is therefore
$$T_{\rm A}/T = \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.$$


(3)  Correct is the proposed solution 1   ⇒   increase of the termination error:

  • This measure simultaneously halves  $T_{\rm P}$  from  $8T$  to  $4T$ .*Thus, only samples in the range  $–2T \leq t < 2T$, are taken into account, which increases the termination error.
  • The mean square error  $(\rm MQF)$  increases from  $0.15 \cdot 10^{-15}$  to  $8 \cdot 10^{-15}$ for the Gaussian pulse  $x_1(t)$ , although the aliasing error actually decreases slightly by this measure.


(4)  Correct is the proposed solution 2   ⇒   increase of the aliasing error::

  • By halving  $f_{\rm A}$  wird auch  $f_{\rm P}$  is also halved.
  • As a result, the aliasing error becomes somewhat larger with a smaller termination error at the same time.
  • Overall, for the Gaussian pulse  $x_1(t)$ , the mean square error  $(\rm MQF)$  increases from  $1.5 \cdot 10^{-16}$  to  $3.3 \cdot 10^{-16}$.


(5)  Proposed solutions 1 and 2 are correct:

  • As can be seen from the graph, the last statement is not true in contrast to the first two.
  • Due to the slow,  $\rm si$–shaped decay of the spectral function, the aliasing error dominates.
  • The  $\rm MQF$ value at  $f_{\rm A} \cdot T = 1/8$  with  $1.4 \cdot 10^{-5}$  is therefore significantly larger than for the Gaussian pulse  $(1.5 \cdot 10^{-16})$.


(6)  Proposed solution 3 is correct:

  • The spectral function  $X_3(f)$  here has a rectangular lead, so that the first two statements do not apply.
  • On the other hand, a termination error is unavoidable with this  $\rm si$–shaped time function. This leads to the large  $\rm MQF$ values given.