Difference between revisions of "Aufgaben:Exercise 4.2Z: Multiplication with a Sine Signal"
m (Text replacement - "Category:Exercises for Signal Representation" to "Category:Signal Representation: Exercises") |
|||
Line 129: | Line 129: | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category:Signal Representation: Exercises|^4.1 Differences | + | [[Category:Signal Representation: Exercises|^4.1 Differences/Similarities of LP and BP Signals^]] |
Revision as of 09:51, 23 April 2021
A periodic message signal $q(t)$is considered, whose spectral function $Q(f)$ can be seen in the upper graph.
A multiplication with the dimensionless carrier $z(t)$, whose spectrum $Z(f)$ is also shown, leads to the signal $s(t) = q(t) \cdot z(t).$
In this task, the spectral function $S(f)$ of this signal is to be determined, whereby the solution can be either in the time or frequency domain.
Hint:
- This exercise belongs to the task Differences and Similiarities of LP and BP Signals.
Questions
Solution
- $$q(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_1 t) - 2\hspace{0.05cm}{\rm V} \cdot {\sin} ( 4 \pi f_1 t)= 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi {t}/{T_1}) - 2\hspace{0.05cm}{\rm V} \cdot {\sin} ( 4 \pi {t}/{T_1}) .$$
- At time $t = 0$ , the second component disappears and $q(t = 0)\; \underline{= 4 \ \text{V}}$.
- On the other hand, for $t = 0.125 \ \text{ms} = T_1/8$ is obtained:
- $$q(t = 0.125{\rm ms}) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( {\pi}/{4}) - 2\hspace{0.05cm}{\rm V} \cdot {\sin} ( {\pi}/{2}) = \frac {4\hspace{0.05cm}{\rm V}}{\sqrt{2}} - 2\hspace{0.05cm}{\rm V} \hspace{0.15 cm}\underline{= 0.828 \hspace{0.05cm}{\rm V}}.$$
(2) According to the purely imaginary spectrum $Z(f)$ and the impulse weights $\pm 3$ must hold:
- $$z(t ) = 6 \cdot {\sin} ( 2 \pi \cdot 5\hspace{0.05cm}{\rm kHz})\hspace{0.5cm}\Rightarrow \hspace{0.5cm} z_{\rm max}\hspace{0.15 cm}\underline{ = 6} .$$
(3) The spectral function $S(f)$ results from the convolution between $Q(f)$ and $Z(f)$. One obtains:
- $$S(f) = - 3{\rm j} \cdot Q(f- f_{\rm T}) + 3{\rm j} \cdot Q(f+ f_{\rm T}).$$
This results in spectral lines at
- $3\ \text{kHz}\ (–3\ {\rm V})$,
- $4\ \text{kHz} (–{\rm j} \cdot 6\ {\rm V})$,
- $6\ \text{kHz} (–{\rm j} \cdot 6\ {\rm V})$,
- $7\ \text{kHz}\ (–3\ {\rm V})$.
Plus the conjugate-complex components at negative frequencies.
Lines with real weights at $\underline{\pm 3 \ \text{kHz}}$ and $\underline{\pm 7 \ \text{kHz}}$.
(4) Imaginary lines appear at $\underline{\pm 4 \ \text{kHz}}$ and $\underline{\pm 6 \ \text{kHz}}$ auf.
An alternative way to solve this problem is to use trigonometric equations.
In the following, for example, $f_5 = 5 \text{ kHz}$. Then it applies:
- $$4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_1 \hspace{0.03cm}t) \cdot 3 \cdot {\sin} ( 2 \pi f_5 \hspace{0.03cm} t)= \frac{12\hspace{0.05cm}{\rm V}}{2}\cdot \big[{\sin} ( 2 \pi f_4 \hspace{0.03cm} t)+ {\sin} ( 2 \pi f_6 \hspace{0.03cm} t)\big],$$
- $$-2\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi f_2 \hspace{0.03cm}t) \cdot 3 \cdot {\sin} ( 2 \pi f_5 \hspace{0.03cm} t)= \frac{-6\hspace{0.05cm}{\rm V}}{2}\cdot \big[{\cos} ( 2 \pi f_3 \hspace{0.03cm} t)+ {\cos} ( 2 \pi f_7 \hspace{0.03cm} t)\big].$$
- From the first equation, the following spectral lines are obtained:
- at $+f_4$ and $-f_4$ with weights $–{\rm j} \cdot 3\ {\rm V}$ bzw. $+{\rm j}\cdot 3 \ {\rm V}$ respectively,
- at $+f_6$ and $-f_6$ with weights $–{\rm j} \cdot 3 \ {\rm V}$ bzw. $+{\rm j} \cdot 3 \ {\rm V}$ respectively.
- The second equation gives a total of four diraclines (all $6 \ {\rm V}$, real and negative) at $\pm f_3$ and $\pm f_7$.
A comparison with the sketch above shows that both solutions lead to the same result.