Difference between revisions of "Aufgaben:Exercise 3.6Z: Complex Exponential Function"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID518__Sig_Z_3_6_neu.png|right|frame|Representation in the spectral domain: <br>complex exponential function and suitable splitting]]
+
[[File:P_ID518__Sig_Z_3_6_neu.png|right|frame|Complex exponential function and suitable splitting&nbsp; (representation in the spectral domain)]]
In connection with&nbsp; [[Signal_Representation/Differences_and_Similarities_of_LP_and_BP_Signals|bandpass systemes]]&nbsp;, one-sided spectra are often used. In the illustration you can see such a one-sided spectral function&nbsp; ${X(f)}$, which results in a complex time signal&nbsp; ${x(t)}$&nbsp;.
+
In connection with&nbsp; [[Signal_Representation/Differences_and_Similarities_of_LP_and_BP_Signals|"bandpass systems"]]&nbsp;, one-sided spectra are often used.&nbsp; In the graphic you see such a one-sided spectral function&nbsp; ${X(f)}$, which results in a complex time signal&nbsp; ${x(t)}$.
In the sketch below,&nbsp; ${X(f)}$&nbsp; is split into an even component&nbsp; ${G(f)}$&nbsp; - with respect to the frequency - and an odd component&nbsp; ${U(f)}$&nbsp;.
+
 
 +
In the sketch below,&nbsp; ${X(f)}$&nbsp; is split into an even component&nbsp; ${G(f)}$&nbsp; &ndash; with respect to the frequency &ndash; and an odd component&nbsp; ${U(f)}$.
  
  
Line 16: Line 17:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Fourier_Transform_Laws|Fourier Transform Laws]].
+
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]].
*All of the laws presented there are illustrated with examples in the learning video&nbsp; [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Laws of the Fourier transform]].
+
*For the first two sub-tasks use the signal parameters&nbsp; $A = 1\, \text{V}$&nbsp; and&nbsp; $f_0 = 125 \,\text{kHz}$.
*Solve this task with the help of the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Mapping_Theorem|Mapping Theorem]]&nbsp; and the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]].
+
*The&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|Shifting Theorem]]&nbsp; and the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|Assignment Theorem]]&nbsp; – are illustrated with examples in the (German language) learning video<br> &nbsp; &nbsp; &nbsp;[[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] &nbsp; &rArr; &nbsp; "Regularities to the Fourier transform".
*Use the signal parameters&nbsp; $A = 1\, \text{V}$&nbsp; and&nbsp; $f_0 = 125 \,\text{kHz}$ for the first two sub-tasks.
 
 
  
  
Line 26: Line 25:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What is the time function&nbsp; $g(t)$&nbsp; that fits&nbsp; $G(f)$? How large is &nbsp; $g(t = 1 \, &micro; \text {s})$?
+
{What is the time function&nbsp; $g(t)$&nbsp; that fits&nbsp; $G(f)$?&nbsp; How large is &nbsp; $g(t = 1 \, &micro; \text {s})$?
 
|type="{}"}
 
|type="{}"}
 
$\text{Re}\big[g(t = 1 \, &micro; \text {s})\big] \ =  \ $ { 0.707 3% } &nbsp;$\text{V}$
 
$\text{Re}\big[g(t = 1 \, &micro; \text {s})\big] \ =  \ $ { 0.707 3% } &nbsp;$\text{V}$
Line 32: Line 31:
  
  
{What is the time function&nbsp; $u(t)$&nbsp; that fits&nbsp; $U(f)$? What is the value of&nbsp; $u(t = 1 \, &micro; \text {s})$?
+
{What is the time function&nbsp; $u(t)$&nbsp; that fits&nbsp; $U(f)$?&nbsp; What is the value of&nbsp; $u(t = 1 \, &micro; \text {s})$?
 
|type="{}"}
 
|type="{}"}
 
$\text{Re}\big[u(t = 1 \, &micro; \text {s})\big]\ = \ $ { 0. } &nbsp;$\text{V}$
 
$\text{Re}\big[u(t = 1 \, &micro; \text {s})\big]\ = \ $ { 0. } &nbsp;$\text{V}$

Revision as of 15:09, 27 April 2021

Complex exponential function and suitable splitting  (representation in the spectral domain)

In connection with  "bandpass systems" , one-sided spectra are often used.  In the graphic you see such a one-sided spectral function  ${X(f)}$, which results in a complex time signal  ${x(t)}$.

In the sketch below,  ${X(f)}$  is split into an even component  ${G(f)}$  – with respect to the frequency – and an odd component  ${U(f)}$.





Hints:


Questions

1

What is the time function  $g(t)$  that fits  $G(f)$?  How large is   $g(t = 1 \, µ \text {s})$?

$\text{Re}\big[g(t = 1 \, µ \text {s})\big] \ = \ $

 $\text{V}$
$\text{Im}\big[g(t = 1 \, µ \text {s})\big]\ = \ $

 $\text{V}$

2

What is the time function  $u(t)$  that fits  $U(f)$?  What is the value of  $u(t = 1 \, µ \text {s})$?

$\text{Re}\big[u(t = 1 \, µ \text {s})\big]\ = \ $

 $\text{V}$
$\text{Im}\big[u(t = 1 \, µ \text {s})\big]\ = \ $

 $\text{V}$


Solution

(1)  $G(f)$  is the spectral function of a cosine signal with period  $T_0 = 1/f_0 = 8 \, µ\text {s}$:

$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$

At  $t = 1 \, µ\text {s}$  the signal value is equal to  $A \cdot \cos(\pi /4)$:

  • The real part is  $\text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$,
  • The imaginary part is  $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}$


(2)  Starting from the Fourier correspondence

$$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$

is obtained by applying the shift theorem twice (in the frequency domain):

$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$
$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
  • The real part of this signal is always zero.
  • At  $t = 1 \, µ\text {s}$  the following applies to the imaginary part:  $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$.


(3)  Because  $X(f) = G(f) + U(f)$  also holds:

$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$

This result can be summarised by  Euler's theorem  as follows:

$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$

The given alternatives 1 and 3 are correct:

  • The signal rotates in the complex plane in a mathematically positive direction, i.e. counterclockwise.
  • For one rotation, the "pointer" needs the period  $T_0 = 1/f_0 = 8 \, µ\text {s}$.