Difference between revisions of "Aufgaben:Exercise 4.5: Coaxial Cable - Impulse Response"

From LNTwww
m (Text replacement - "„" to """)
m (Text replacement - "”" to """)
Line 12: Line 12:
 
Der erste Term dieser Gleichung ist auf die Ohmschen Verluste zurückzuführen, der zweite Term auf die Querverluste. Dominant ist jedoch der Skineffekt, der durch den dritten Term ausgedrückt wird.
 
Der erste Term dieser Gleichung ist auf die Ohmschen Verluste zurückzuführen, der zweite Term auf die Querverluste. Dominant ist jedoch der Skineffekt, der durch den dritten Term ausgedrückt wird.
  
Mit den für ein "Normalkoaxialkabel”  $\text{(2.6 mm}$  Kerndurchmesser,  $\text{9.5 mm}$  Außendurchmesser$)$  gültigen Koeffizienten
+
Mit den für ein "Normalkoaxialkabel"  $\text{(2.6 mm}$  Kerndurchmesser,  $\text{9.5 mm}$  Außendurchmesser$)$  gültigen Koeffizienten
 
:$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{\rm MHz}}
 
:$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{\rm MHz}}
 
   \hspace{0.05cm},
 
   \hspace{0.05cm},
Line 23: Line 23:
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}}
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}}
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
⇒   Dämpfungsverlauf  ${a}_{\rm K}(f)$  und Phasenverlauf  $b_{\rm K}(f)$  sind bis auf die Pseudoeinheiten "Np” bzw. "rad” identisch.
+
⇒   Dämpfungsverlauf  ${a}_{\rm K}(f)$  und Phasenverlauf  $b_{\rm K}(f)$  sind bis auf die Pseudoeinheiten "Np" bzw. "rad" identisch.
  
  
Line 118: Line 118:
  
  
'''(3)'''  Setzt man das Ergebnis in die vorgegebene Gleichung ein, so erhält man (zur Vereinfachung verwenden wir "${a}$”anstelle von "${a}_{\rm \star}$”):
+
'''(3)'''  Setzt man das Ergebnis in die vorgegebene Gleichung ein, so erhält man (zur Vereinfachung verwenden wir "${a}$"anstelle von "${a}_{\rm \star}$"):
 
:$$h_{\rm K}(t_{\rm max})  =  \frac{1}{T} \cdot \frac{ {a}}{  \sqrt{2  \pi^2 \cdot {{a}^6}/{(3\pi)^3}}}\hspace{0.1cm} \cdot
 
:$$h_{\rm K}(t_{\rm max})  =  \frac{1}{T} \cdot \frac{ {a}}{  \sqrt{2  \pi^2 \cdot {{a}^6}/{(3\pi)^3}}}\hspace{0.1cm} \cdot
 
   {\rm exp} \left[ - \frac{{a}^2}{2\pi} \cdot
 
   {\rm exp} \left[ - \frac{{a}^2}{2\pi} \cdot

Revision as of 15:29, 28 May 2021

Impulsantwort eines Koaxialkabels

Der Frequenzgang eines Koaxialkabels der Länge  $l$  ist durch folgende Formel darstellbar:

$$H_{\rm K}(f) = {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- (\alpha_1 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1) \hspace{0.05cm}\cdot f \hspace{0.05cm}\cdot \hspace{0.05cm}l} \cdot {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l} \hspace{0.05cm}.$$

Der erste Term dieser Gleichung ist auf die Ohmschen Verluste zurückzuführen, der zweite Term auf die Querverluste. Dominant ist jedoch der Skineffekt, der durch den dritten Term ausgedrückt wird.

Mit den für ein "Normalkoaxialkabel"  $\text{(2.6 mm}$  Kerndurchmesser,  $\text{9.5 mm}$  Außendurchmesser$)$  gültigen Koeffizienten

$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac {\rm Np}{\rm km \cdot \sqrt{\rm MHz}} \hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac {\rm rad}{\rm km \cdot \sqrt{\rm MHz}}\hspace{0.05cm}$$

lässt sich dieser Frequenzgang auch wie folgt darstellen:

$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}} \hspace{0.05cm}.$$

⇒   Dämpfungsverlauf  ${a}_{\rm K}(f)$  und Phasenverlauf  $b_{\rm K}(f)$  sind bis auf die Pseudoeinheiten "Np" bzw. "rad" identisch.


Definiert man die charakteristische Kabeldämpfung  ${a}_{\rm *}$  bei der halben Bitrate  $($also bei  $R/2)$  und normiert die Frequenz auf  $R$,  so kann man Digitalsysteme unterschiedlicher Bitrate und Länge einheitlich behandeln:

$${a}_{\rm \star} = {a}_{\rm K}(f ={R}/{2}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{- {a}_{\rm \star} \cdot \sqrt{2f/R}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} {a}_{\star} \cdot \sqrt{2f/R}}\hspace{0.4cm}{\rm mit}\hspace{0.2cm}{a}_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$
  • Der entsprechende  $\rm dB$–Wert ist um den Faktor  $8.686$  größer. 
  • Bei einem Binärsystem gilt  $R = 1/T$, so dass sich die charakteristische Kabeldämpfung auf die Frequenz  $f = 1/(2T)$  bezieht.


Die  Fouriertransformierte  von  $H_{\rm K}(f)$  liefert die Impulsantwort  $h_{\rm K}(t)$, die für ein Koaxialkabel mit den hier beschriebenen Näherungen in geschlossen–analytischer Form angebbar ist. Für ein Binärsystem gilt:

$$h_{\rm K}(t) = \frac{ {a}_{\rm \star}/T}{ \sqrt{2 \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot {\rm e}^{ - {{a}_{\rm \star}^2}/(2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm} t/T)} \hspace{0.4cm}{\rm mit}\hspace{0.2cm}{a}_{\rm \star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$

Die Teilaufgabe  (5)  bezieht sich auf den Empfangsgrundimpuls  $g_r(t) = g_s(t) \star h_{\rm K}(t)$, wobei für  $g_s(t)$  ein Rechteck mit Höhe  $s_0$  und Dauer  $T$  angenommen wird.




Hinweise:


Fragebogen

1

Wie groß ist die Länge  $l$  eines Normalkoaxialkabels, wenn sich für die Bitrate  $R = 140 \ \rm Mbit/s$  die charakteristische Kabeldämpfung  ${a}_{\rm \star} = 60 \ \rm dB$  ergibt?

$l \ =\ $

$\ \rm km$

2

Zu welcher Zeit  $t_{\rm max}$  besitzt  $h_{\rm K}(t)$  sein Maximum? Es gelte weiter  ${a}_{\rm \star} = 60 \ \rm dB$.

$t_{\rm max} \ = \ $

$\ \cdot T$

3

Wie groß ist der Maximalwert der Impulsantwort?

${\rm Max}\, \big [h_{\rm K}(t)\big ] \ = \ $

$\ \cdot 1/T$

4

Ab welcher Zeit  $t_{\rm 5\%}$  ist  $h_{\rm K}(t)$  kleiner als  $5\%$  des Maximums?  Berücksichtigen Sie als Näherung nur den ersten Term der angegebenen Formel.

$t_{\rm 5\%} \ = \ $

$\ \cdot T$

5

Welche Aussagen treffen für den Empfangsgrundimpuls  $g_r(t)$  zu?

$g_r(t)$  ist doppelt so breit wie  $h_{\rm K}(t)$.
Es gilt näherungsweise  $g_r(t) = s_0 \cdot T \cdot h_{\rm K}(t)$.
$g_r(t)$  kann durch einen Gaußimpuls angenähert werden.


Musterlösung

(1)  Die charakteristische Kabeldämpfung  ${a}_{\rm \star} = 60 \ \rm dB$  entspricht in etwa  $6.9\ \rm Np$. Deshalb muss gelten:

$$\alpha_2 \cdot l \cdot {R}/{2} = 6.9\,\,{\rm Np} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} l = \frac{6.9\,\,{\rm Np}}{0.2722 \,\, {\rm Np}/({\rm km \cdot \sqrt{\rm MHz}}) \cdot \sqrt{70\,\,{\rm MHz}}}\hspace{0.15cm}\underline{ \approx 3\,\,{\rm km}} \hspace{0.05cm}.$$


(2)  Mit den Substitutionen

$$x = \frac{ t}{ T}, \hspace{0.2cm} K_1 = \frac{ {a}_{\rm \star}/T}{\sqrt{2 \pi^2 }}, \hspace{0.2cm} K_2 = \frac{ {a}_{\rm \star}^2}{2 \pi}$$

kann die Impulsantwort wie folgt beschrieben werden:

$$h_{\rm K}(x) = K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x} \hspace{0.05cm}.$$
  • Durch Nullsetzen der Ableitung folgt daraus:
$$- {3}/{2} \cdot K_1 \cdot x^{-5/2}\cdot {\rm e}^{-K_2/x}+ K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x}\cdot (-K_2) \cdot (-x^{-2})= 0 \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm} {3}/{2} \cdot x^{-5/2} = K_2 \cdot x^{-7/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x_{\rm max} = {2}/{3} \cdot K_2 = \frac{{a}_{\rm \star}^2}{3 \pi} \hspace{0.05cm}.$$
  • Daraus ergibt sich für  $60 \ \rm dB$  Kabeldämpfung  $({a}_{\rm \star} \approx 6.9 \ \rm Np)$:
$$x_{\rm max} = { t_{\rm max}}/{ T}= { 6.9^2}/{(3\pi)}\hspace{0.15cm}\underline{ \approx 5 }\hspace{0.05cm}.$$


(3)  Setzt man das Ergebnis in die vorgegebene Gleichung ein, so erhält man (zur Vereinfachung verwenden wir "${a}$"anstelle von "${a}_{\rm \star}$"):

$$h_{\rm K}(t_{\rm max}) = \frac{1}{T} \cdot \frac{ {a}}{ \sqrt{2 \pi^2 \cdot {{a}^6}/{(3\pi)^3}}}\hspace{0.1cm} \cdot {\rm exp} \left[ - \frac{{a}^2}{2\pi} \cdot \frac{3\pi}{{\rm a}^2}\hspace{0.1cm}\right] = \frac{1}{T} \cdot \frac{1}{{a}^2}\cdot \sqrt{\frac{27 \pi }{2}} \cdot {\rm e}^{-3/2} \approx \frac{1}{T} \cdot \frac{1.453}{{a}^2} \hspace{0.05cm}.$$
  • Mit  $a = 6.9$  kommt man somit zum Endergebnis:
$${\rm Max}\,[h_{\rm K}(t)] = \frac{1.453}{{6.9\,}^2} \cdot {1}/{T}\hspace{0.15cm}\underline{\approx 0.03 \cdot {1}/{T}} \hspace{0.05cm}.$$


(4)  Mit dem Ergebnis aus  (3)  lautet die geeignete Bestimmungsgleichung:

$$\frac{ {a}/T}{ \sqrt{2 \pi^2 \cdot (t_{5\%}/T)^3}}= 0.05 \cdot 0.03 {1}/{T} \hspace{0.15cm}{= 0.0015 \cdot {1}/{T}} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} (t_{5\%}/T)^{3/2} = \frac{a}{\sqrt{2} \cdot \pi \cdot 0.0015}\approx 1036 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{t_{5\%}/T \approx 103.5} \hspace{0.05cm}.$$
  • Dieser Wert ist etwas zu groß, da der zweite Term  ${\rm e}^{-0.05}\approx 0.95$  vernachlässigt wurde.
  • Die exakte Berechnung liefert  $t_{\rm 5\%}/T \approx 97$.


(5)  Richtig ist der zweite Lösungsvorschlag:

  • Allgemein gilt:
$$g_r(t) = g_s(t) \star h_{\rm K}(t) = s_0 \cdot \int_{t-T/2}^{t+T/2} h_{\rm K}(\tau) \,{\rm d} \tau .$$
  • Da sich die Kanalimpulsantwort $h_{\rm K}(t)$ innerhalb einer Symboldauer nur unwesentlich ändert, kann auch geschrieben werden:
$$g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T.$$