Difference between revisions of "Aufgaben:Exercise 5.5: Multi-User Interference"
m (Text replacement - "”" to """) |
m (Text replacement - "„" to """) |
||
Line 84: | Line 84: | ||
'''(2)''' Benutzt der interferierende Teilnehmer die gleiche M–Sequenz $(45)$ wie der betrachtete Nutzer, <br> so sind die (normierten) Detektionsnutzabtastwerte gleich $+2$ $($zu $25\%)$, $-2$ $($zu $25\%)$ und $0$ $($zu $50\%)$. | '''(2)''' Benutzt der interferierende Teilnehmer die gleiche M–Sequenz $(45)$ wie der betrachtete Nutzer, <br> so sind die (normierten) Detektionsnutzabtastwerte gleich $+2$ $($zu $25\%)$, $-2$ $($zu $25\%)$ und $0$ $($zu $50\%)$. | ||
− | *Bei $d(νT) = ±2$ wird die Fehlerwahrscheinlichkeit für den betrachteten Teilnehmer signifikant verkleinert. In diesem Fall übertragen beide Nutzer das gleiche Bit $($ | + | *Bei $d(νT) = ±2$ wird die Fehlerwahrscheinlichkeit für den betrachteten Teilnehmer signifikant verkleinert. In diesem Fall übertragen beide Nutzer das gleiche Bit $($"$+1$" oder "$-1$"$)$ und der Abstand von der Schwelle wird verdoppelt: |
:$$ p_{\rm B}\,\,\big [{\rm falls}\,\, d (\nu T) = \pm 2s_0 \big ] = {\rm Q} \left ( 2 \cdot 2.515 \right ) = {\rm Q} \left ( 5.03 \right ) \approx 2.45 \cdot 10^{-7} \approx 0 \hspace{0.05cm}.$$ | :$$ p_{\rm B}\,\,\big [{\rm falls}\,\, d (\nu T) = \pm 2s_0 \big ] = {\rm Q} \left ( 2 \cdot 2.515 \right ) = {\rm Q} \left ( 5.03 \right ) \approx 2.45 \cdot 10^{-7} \approx 0 \hspace{0.05cm}.$$ | ||
*Ist dagegen $d(νT) = 0$ (zum Beispiel, wenn $a_\text{1(s)} = +1$ und $a_\text{1(i)} = -1$ gilt oder umgekehrt), so löschen sich die Signale vollständig aus und man erhält | *Ist dagegen $d(νT) = 0$ (zum Beispiel, wenn $a_\text{1(s)} = +1$ und $a_\text{1(i)} = -1$ gilt oder umgekehrt), so löschen sich die Signale vollständig aus und man erhält |
Revision as of 15:46, 28 May 2021
Wir betrachten die PN–Modulation mit folgenden Parametern:
- Die Spreizung erfolgt mit der M–Sequenz mit der Oktalkennung $(45)$, ausgehend vom Grad $G = 5$. Die Periodenlänge ist somit
- $$P = 2^5 –1 = 31.$$
- Der AWGN–Parameter wird mit $10 · \lg \ (E_{\rm B}/N_0) = 5 \ \rm dB$ festgelegt ⇒ $E_{\rm B}/N_0 = 3.162 = 1/0.316$.
- Die Bitfehlerwahrscheinlichkeit beträgt ohne interferierende Teilnehmer im gleichen Frequenzband:
- $$p_{\rm B} = {\rm Q} \left ( \sqrt{ {2\cdot E_{\rm B}}/{N_{\rm 0}}}\right ) \approx {\rm Q} \left ( \sqrt{2 \cdot 3.162}\right ) = {\rm Q} \left ( 2.515 \right ) \approx 6 \cdot 10^{-3} \hspace{0.05cm}.$$
- Da ohne interferierende Teilnehmer alle Nutzabtastwerte gleich $±s_0$ sind (Nyquistsystem), ist die Bitfehlerwahrscheinlichkeit mit dem Rauscheffektivwert $σ_d$ vor dem Entscheider $($herrührend vom AWGN–Rauschen$)$ wie folgt gegeben:
- $$p_{\rm B} = {\rm Q} \left ( {s_0}/{\sigma_d}\right ) \hspace{0.05cm}.$$
In dieser Aufgabe soll untersucht werden, wie die Bitfehlerwahrscheinlichkeit durch einen zusätzlichen Teilnehmer verändert wird.
- Die möglichen Spreizfolgen des interferierenden Teilnehmers seien ebenfalls durch $P = 31$ festgelegt. Zur Verfügung stehen die PN–Generatoren mit den Oktalkennungen $(45)$, $(51)$, $(57)$, $(67)$, $(73)$ und $(75)$.
- In der Tabelle sind die PKKF–Werte für $λ = 0$ angegeben, desweiteren auch der jeweilige Maximalwert für eine andere Anfangsphase:
- $$ {\rm Max}\,\,|{\it \varphi}_{45,\hspace{0.05cm}i}| = \max_{\lambda} \,\,|{\it \varphi}_{45,\hspace{0.05cm}i}(\lambda)| \hspace{0.05cm}.$$
- Der Sonderfall $φ_\text{45, 45}(λ = 0)$ gibt den PAKF–Wert der Spreizfolge mit der Oktalkennung $(45)$ an.
Im Verlauf dieser Aufgabe und in der Musterlösung werden folgende Signale erwähnt:
- $q(t)$: binäres bipolares Quellensignal, Symboldauer $T$,
- $c(t)$: $±1$–Spreizsignal, Chipdauer $T_c$,
- $s(t)$: bandgespreiztes Sendesignal; es gilt $s(t) = q(t) · c(t)$, Amplitude $±s_0$, Chipdauer $T_c$,
- $n(t)$: AWGN–Rauschen, gekennzeichnet durch den Quotienten $E_{\rm B}/N_0$,
- $i(t)$: Interferenzsignal des störenden Teilnehmers,
- $r(t)$: Empfangssignal; es gilt $r(t) = s(t) + n(t) + i(t)$,
- $b(t)$: bandgestauchtes Signal; es gilt $b(t)= r(t) · c(t)$,
- $d(t)$: Detektionssignal nach Integration von $b(t)$ über die Symboldauer $T$,
- $v(t)$: Sinkensignal, der Vergleich mit $q(t)$ liefert die Fehlerwahrscheinlichkeit.
Hinweise:
- Die Aufgabe gehört zum Kapitel Fehlerwahrscheinlichkeit der PN-Modulation.
- Bezug genommen wird insbesondere auf den Abschnitt Zwei Teilnehmer mit M–Sequenz–Spreizung.
- Für die so genannte Q-Funktion kann von folgenden Näherungen ausgegangen werden:
- $$ {\rm Q} (2) \approx 0.02275, \hspace{0.2cm}{\rm Q} (3) \approx 0.00135, \hspace{0.2cm}{\rm Q} (5) \approx 2.45 \cdot 10^{-7} \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$p_{\rm B} = {\rm Q}(2.515) = {\rm Q}({s_0}/{\sigma_d}) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \frac{\sigma_d}{s_0} = \frac{1}{2.515} = 0.398 \hspace{0.15cm}\underline {\approx 0.4} \hspace{0.05cm}.$$
- Man könnte diese Größe aber auch über die allgemeinere Gleichung
- $$ \sigma_d^2 = \frac{N_0}{2 }\cdot\int^{+\infty}_{-\infty} |H_{\rm I}(f) |^2 \,\,{\rm d} {\it f}\hspace{0.05cm} = \frac{N_0}{2 }\cdot\int^{+\infty}_{-\infty}{\rm si}^2(\pi f T)\,\,{\rm d} {\it f} = \frac{N_0}{2T } \hspace{0.05cm}.$$
- berechnen. Hierbei beschreibt $H_{\rm I}(f)$ den Integrator im Frequenzbereich.
- Mit $E_{\rm B}= s_0^2 · T$ erhält man das gleiche Ergebnis:
- $$\frac{\sigma_d^2}{s_0^2} = \frac{N_0}{2 \cdot s_0^2 \cdot T } = \frac{N_0}{2 E_{\rm B} } = \frac{0.316}{2 } = 0.158\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\sigma_d}/{s_0} = 0.398 \approx 0.4 \hspace{0.05cm}.$$
(2) Benutzt der interferierende Teilnehmer die gleiche M–Sequenz $(45)$ wie der betrachtete Nutzer,
so sind die (normierten) Detektionsnutzabtastwerte gleich $+2$ $($zu $25\%)$, $-2$ $($zu $25\%)$ und $0$ $($zu $50\%)$.
- Bei $d(νT) = ±2$ wird die Fehlerwahrscheinlichkeit für den betrachteten Teilnehmer signifikant verkleinert. In diesem Fall übertragen beide Nutzer das gleiche Bit $($"$+1$" oder "$-1$"$)$ und der Abstand von der Schwelle wird verdoppelt:
- $$ p_{\rm B}\,\,\big [{\rm falls}\,\, d (\nu T) = \pm 2s_0 \big ] = {\rm Q} \left ( 2 \cdot 2.515 \right ) = {\rm Q} \left ( 5.03 \right ) \approx 2.45 \cdot 10^{-7} \approx 0 \hspace{0.05cm}.$$
- Ist dagegen $d(νT) = 0$ (zum Beispiel, wenn $a_\text{1(s)} = +1$ und $a_\text{1(i)} = -1$ gilt oder umgekehrt), so löschen sich die Signale vollständig aus und man erhält
- $$p_{\rm B}\,\,\big[{\rm falls}\,\, d (\nu T) = 0 \big] = {\rm Q} \left ( 0 \right ) = 0.5 \hspace{0.05cm}.$$
- Durch Mittelung über diese beiden gleichwahrscheinlichen Möglichkeiten ergibt sich so für die mittlere Bitfehlerwahrscheinlichkeit:
- $$p_{\rm B}= 0.5 \cdot 2.45 \cdot 10^{-7}+ 0.5 \cdot 0.5 \hspace{0.15cm}\underline {\approx 25\%} \hspace{0.05cm}.$$
(3) Wir betrachten zunächst nur den Nutzanteil ⇒ $n(t) = 0$, beschränken uns auf das erste Datensymbol und setzen den Koeffizienten $a_\text{1(s)} = +1$ voraus.
- Dann gilt innerhalb dieses Datenbits $s(t) = c_{45}(t)$.
- Ist der Koeffizient $a_\text{1(i)} $ des interferierenden Teilnehmers ebenfalls $+1$, so erhält man für die vorne spezifizierten Signale im Zeitintervall von $0$ bis $T$:
- $$ r(t) = c_{45}(t) + c_{75}(t)\hspace{0.05cm},$$
- $$b(t) = r(t) \cdot c_{45}(t) = \left [c_{45}(t) + c_{75}(t) \right ] \cdot c_{45}(t) = 1+ c_{45}(t) \cdot c_{75}(t) \hspace{0.05cm},$$
- $$ d (T) = \frac{1}{T} \cdot \int_{0 }^{ T} b (t )\hspace{0.1cm} {\rm d}t = 1 + {\it \varphi}_{45,\hspace{0.05cm}75}(\lambda = 0) \hspace{0.05cm}.$$
- Hierbei bezeichnet $φ_\text{45, 75}(τ)$ die PKKF zwischen den Spreizfolgen mit den Oktalkennungen $(45)$ und $(75)$, die in der Tabelle auf der Angabenseite zu finden sind.
- Entsprechend gilt für den Detektionsnutzabtastwert unter der Voraussetzung $a_\text{1(s)} = +1$ und $a_\text{1(i)} =-1$:
- $$d (T) = 1 - {\it \varphi}_{45,\hspace{0.05cm}75}(\lambda = 0) \hspace{0.05cm}.$$
- Aus Symmetriegründen liefern die Koeffizienten $a_\text{1(s)} = -1$, $a_\text{1(i)} = -1$ sowie $a_\text{1(s)} = -1$, $a_\text{1(i)} = +1$ die genau gleichen Beiträge für die Bitfehlerwahrscheinlichkeit wie $a_\text{1(s)} = +1$, $a_\text{1(i)} = +1$ bzw. $a_{1(s)} = +1$, $a_{1(i)} = –1$, wenn man zudem das AWGN–Rauschen berücksichtigt.
- Mit dem Ergebnis der Teilaufgabe (1) und mit $φ_\text{45, 75}(λ = 0) = 7/31$ erhält man somit näherungsweise:
- $$p_{\rm B} = \frac{1}{2} \cdot {\rm Q} \left ( \frac{1+ 7/31}{0.4} \right ) + \frac{1}{2} \cdot {\rm Q} \left ( \frac{1- 7/31}{0.4} \right ) = \frac{1}{2} \cdot {\rm Q} \left ( \frac{1.225}{0.4} \right ) + \frac{1}{2} \cdot {\rm Q} \left ( \frac{0.775}{0.4} \right ) = \frac{1}{2} \cdot {\rm Q} \left ( 3.06 \right ) + \frac{1}{2} \cdot {\rm Q} \left ( 1.94 \right )$$
- $$ \Rightarrow \hspace{0.3cm} p_{\rm B}\approx \frac{1}{2} \cdot \left [{\rm Q} \left ( 3 \right ) + {\rm Q} \left ( 2 \right ) \right ] = \frac{1}{2} \cdot \left [0.00135 + 0.02275 \right ] \hspace{0.15cm}\underline {= 1.2\%}\hspace{0.05cm}.$$
(4) Möglich sind die Lösungsvorschläge 2 und 3:
- Der PKKF–Wert $φ_\text{45, 57}(λ = 0)$ ist betragsmäßig nur $1/31$ und damit ist die Fehlerwahrscheinlichkeit nur geringfügig größer als $0.6\%$.
- Die Folge mit den Oktalkennung $(67)$ führt dagegen zur gleichen PKKF wie die Folge $(75)$.
- Ohne störenden Teilnehmer gilt entsprechend dem Angabenblatt: $p_{\rm B} = 0.6\%$.
- Mit Interferenz kann dieser Wert nicht unterschritten werden ⇒ Lösungsvorschlag 1 ist nicht möglich.