Difference between revisions of "Aufgaben:Exercise 1.3: Measured Step Response"

From LNTwww
Line 87: Line 87:
  
 
'''(3)'''  The step response  $σ(t)$  is equal to the output signal  $y(t)$ if  $x(t) = γ(t)$  is applied to the input.  
 
'''(3)'''  The step response  $σ(t)$  is equal to the output signal  $y(t)$ if  $x(t) = γ(t)$  is applied to the input.  
*Wegen  $x_1(t) = 4 \hspace{0.05cm} \rm {V} · γ(t)$  gilt somit im Bereich von  $0$  bis  $T = 2 \ \rm ms$:  
+
*Because of  $x_1(t) = 4 \hspace{0.05cm} \rm {V} · γ(t)$  the following holds in the range from  $0$  to  $T = 2 \ \rm ms$:  
 
:$$\sigma(t) = \frac{y_1(t)}{ {\rm 4\, V} } = 0.5 \cdot\big( {t}/{T} - 0.5 ({t}/{T})^2\big).$$
 
:$$\sigma(t) = \frac{y_1(t)}{ {\rm 4\, V} } = 0.5 \cdot\big( {t}/{T} - 0.5 ({t}/{T})^2\big).$$
*Zum Zeitpunkt  $t = T = 2 \ \rm ms$  erreicht die Sprungantwort ihren Endwert  $0.25$.  
+
*At time  $t = T = 2 \ \rm ms$  the step response reaches its final value  $0.25$.  
*Für  $t = T/2 = 1 \ \rm ms$  ergibt sich der Zahlenwert  $3/16  \; \underline{\: = \: 0.1875}$.  
+
*For  $t = T/2 = 1 \ \rm ms$  the numerical value  $3/16  \; \underline{\: = \: 0.1875}$ is obtained.  
*Beachten Sie bitte, dass die Sprungantwort  $σ(t)$  ebenso wie die Sprungfunktion  $γ(t)$  keine Einheit besitzt.  
+
*Please note that the step response  $σ(t)$  as well as the step function  $γ(t)$  has no unit.  
  
  
  
[[File:P_ID840__LZI_A_1_3d.png |Berechnete Impulsantwort | rechts|frame]]
+
[[File:P_ID840__LZI_A_1_3d.png |Computed impulse response | rechts|frame]]
'''(4)'''  Die Sprungantwort  $σ(t)$  ist das Integral über die Impulsantwort  $h(t)$.  
+
'''(4)'''  The step response  $σ(t)$  is the integral over the impulse response  $h(t)$.  
*Damit ergibt sich  $h(t)$  aus  $σ(t)$  durch Differentiation nach der Zeit.  
+
*Thus,  $h(t)$  is obtained from  $σ(t)$  by differentiation with respect to time.  
*Im Bereich&nbsp; $0 < t < T$&nbsp; gilt deshalb:  
+
*n the range&nbsp; $0 < t < T$&nbsp; therefore the following is valid:  
 
:$$h(t) = \frac{{\rm d}\hspace{0.1cm}\sigma(t)}{{\rm d}t}=  0.5 \cdot\left( \frac{1}{T} - 0.5 (\frac{2t}{T^2})\right)  = \frac{0.5}{T} \cdot (1- \frac{t}{T})$$
 
:$$h(t) = \frac{{\rm d}\hspace{0.1cm}\sigma(t)}{{\rm d}t}=  0.5 \cdot\left( \frac{1}{T} - 0.5 (\frac{2t}{T^2})\right)  = \frac{0.5}{T} \cdot (1- \frac{t}{T})$$
 
:$$\Rightarrow \hspace{0.2cm} h(t = {\rm 1\, ms}) = h(t = T/2) = \frac{0.25}{T} \hspace{0.15cm}\underline{= 125 \cdot{1}/{ {\rm s} } },$$
 
:$$\Rightarrow \hspace{0.2cm} h(t = {\rm 1\, ms}) = h(t = T/2) = \frac{0.25}{T} \hspace{0.15cm}\underline{= 125 \cdot{1}/{ {\rm s} } },$$
 
:$$\Rightarrow \hspace{0.2cm} h(t = {\rm 2\, ms}) = h(t = T) \hspace{0.15cm}\underline{= 0}.$$
 
:$$\Rightarrow \hspace{0.2cm} h(t = {\rm 2\, ms}) = h(t = T) \hspace{0.15cm}\underline{= 0}.$$
*Für&nbsp; $t < 0$&nbsp; und&nbsp; $t ≥ T$&nbsp; gilt stets&nbsp; $h(t)=0$.  
+
*For&nbsp; $t < 0$&nbsp; and&nbsp; $t ≥ T$&nbsp; this,&nbsp; $h(t)=0$, always holds.  
*Der Wert&nbsp; $h(t = 0)$&nbsp; bei exakt&nbsp; $t = 0$&nbsp; muss aus dem Mittelwert zwischen links- und rechtsseitigem Grenzwert ermittelt werden:  
+
*The value&nbsp; $h(t = 0)$&nbsp; at exactly&nbsp; $t = 0$&nbsp; must be determined from the mean value between the left-hand and right-hand limits:  
 
:$$h(t=0) = {1}/{2} \cdot \left[ \lim_{\varepsilon
 
:$$h(t=0) = {1}/{2} \cdot \left[ \lim_{\varepsilon
 
\hspace{0.03cm} \to \hspace{0.03cm}0} h(- \varepsilon)+ \lim_{\varepsilon
 
\hspace{0.03cm} \to \hspace{0.03cm}0} h(- \varepsilon)+ \lim_{\varepsilon
Line 110: Line 110:
  
  
[[File:P_ID829__LZI_A_1_3e.png | Berechnete Rechteckantwort| rechts|frame]]
+
[[File:P_ID829__LZI_A_1_3e.png | computed rectangular response| rechts|frame]]
'''(5)'''&nbsp; Der Rechteckimpuls&nbsp; $x_2(t)$&nbsp; kann auch als die Differenz zweier um&nbsp; $±T/2$&nbsp; verschobener Sprünge dargestellt werden:
+
'''(5)'''&nbsp; The rectangular pulse&nbsp; $x_2(t)$&nbsp; can also be represented as the difference of two steps shifted by&nbsp; $±T/2$&nbsp;:
 
:$$x_2(t) = A \cdot \big[\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big].$$
 
:$$x_2(t) = A \cdot \big[\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big].$$
*Damit ist das Ausgangssignal gleich der Differenz zweier um&nbsp; $±T/2$&nbsp; verschobener Sprungantworten:
+
*Hence, the output signal is equal to the difference of two step responses shifted by&nbsp; $±T/2$&nbsp;:
 
:$$y_2(t) = A \cdot \big[\sigma(t + {T}/{2}) - \sigma(t - {T}/{2})\big].$$
 
:$$y_2(t) = A \cdot \big[\sigma(t + {T}/{2}) - \sigma(t - {T}/{2})\big].$$
*Für&nbsp; $t = \: -T/2 = -1\ \rm ms$&nbsp; gilt&nbsp; $y_2(t) \;\underline{ = 0}$.  
+
*For&nbsp; $t = \: -T/2 = -1\ \rm ms$&nbsp; the following holds:&nbsp; $y_2(t) \;\underline{ = 0}$.  
  
*Für die weiteren betrachteten Zeitpunkte erhält man wie in der Grafik angegeben:  
+
*For the other time points considered the following is obtained as indicated in the graph:  
 
:$$y_2(t = 0) = A \cdot \big[\sigma(0.5 \cdot T) - \sigma(-0.5 \cdot T)\big] =
 
:$$y_2(t = 0) = A \cdot \big[\sigma(0.5 \cdot T) - \sigma(-0.5 \cdot T)\big] =
 
  {\rm 2\, V}\cdot \left[0.1875 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.375\, V}},$$
 
  {\rm 2\, V}\cdot \left[0.1875 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.375\, V}},$$

Revision as of 01:09, 1 July 2021

Measured step response

A step-shaped signal $$x_1(t) = 4\hspace{0.05cm} {\rm V} \cdot \gamma(t)$$ (blue curve) is applied to the input of a linear time-invariant (LTI) transmission system

  • with the frequency response  $H(f)$
  • and the impulse response  $h(t)$.


The measured output signal  $y_1(t)$  then has the curve shown below.

  • With  $T = 2 \,{\rm ms}$  this signal can be described in the range from  $0$  to  $T$  as follows:
$$y_1(t) = 2 \hspace{0.05cm}{\rm V} \cdot\big[ {t}/{T} - 0.5 \cdot ({t}/{T})^2\big].$$
  • From  $t = T $  on   $y_1(t)$  is constantly equal  $1 \,{\rm V}$.


In the last subtask  (5)  the output signal  $y_2(t)$  is to be determined if a symmetrical rectangular pulse  $x_2(t)$  of duration  $T = 2 \hspace{0.05cm} {\rm ms}$  is applied to the input (see red curve in the upper graph).





Please note:

  • The task belongs to the chapter  System Description in Time Domain.
  • The rectangular pulse  $x_2(t)$  can also be written as follows with   $A = 2 \hspace{0.05cm} \text{V}$ :
$$x_2(t) = A \cdot \big [\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big ].$$
  • The frequency response  $H(f)$  of the LTI system considered here can be taken from the exercise description of  Exercise 3.8  in the book "Signal Representation”. However, the abscissa and ordinate parameters have to be adjusted accordingly.
  • For the solution of the problem on hand, though,  $H(f)$  is not explicitly required.



Questions

1

What statements can be made about the LTI system based on the graph?

$H(f)$  describes an acausal system.
$H(f)$  describes a causal system.
$H(f)$  describes a low-pass filter.
$H(f)$  describes a high-pass filter.

2

What is the direct signal transmission factor?

$H(f = 0) \ =\ $

3

What is the step response  $σ(t)$? What is its value at  $t = T/2$ ?

$σ(t = \rm 1 \: ms) \ = \ $

4

Compute the impulse response  $h(t)$  of the system. What values does it have at the times  $t = T/2$  and  $t = T$?

$h(t = \rm 1 \: ms) \ =\ $

 $\text {1/s}$
$h(t = \rm 2 \: ms) \ =\ $

 $\text {1/s}$

5

The rectangular pulse  $x_2(t)$  is applied to the input. What is the output signal  $y_2(t)$  at the times  $t_1 = -1 \text { ms}$,  $t_2 = 0$ ,  $t_3 = +1 \text { ms}$  and  $t_4 = +2 \text { ms}$?

$y_2(t = t_1) \ =\ $

 $\text {V}$
$y_2(t = t_2) \ =\ $

 $\text {V}$
$y_2(t = t_3) \ =\ $

 $\text {V}$
$y_2(t = t_4) \ =\ $

 $\text {V}$


Sample solution

(1)  Approaches 2 und 3 are correct:

  • The output signal is  $y_1(t)=0$ as long as the input signal is  $x_1(t) = 0$ . This means that there is a causal system on hand.
  • One could have arrived at the same result just by considering the statement "the output signal was measured". Only causal systems are realisable and only in realisable systems something can be measured.
  • The input signal  $x_1(t)$  can be interpreted as a direct signal for very large times  $(t \gg 0)$ . If  $H(f)$  was a high-pass filter, then  $y_1(t)$  would have to go towards zero for  $t → ∞$ . This means:   $H(f)$  represents a low-pass filter.


(2)  The direct signal transmission factor can be read from  $x_1(t)$  and  $y_1(t)$  when the transient has decayed:

$$H(f =0) = \frac{y_1(t \rightarrow \infty)}{x_1(t \rightarrow \infty)}= \frac{ {\rm 1\, V} }{ {\rm 4\, V} } \hspace{0.15cm}\underline{= 0.25}.$$


(3)  The step response  $σ(t)$  is equal to the output signal  $y(t)$ if  $x(t) = γ(t)$  is applied to the input.

  • Because of  $x_1(t) = 4 \hspace{0.05cm} \rm {V} · γ(t)$  the following holds in the range from  $0$  to  $T = 2 \ \rm ms$:
$$\sigma(t) = \frac{y_1(t)}{ {\rm 4\, V} } = 0.5 \cdot\big( {t}/{T} - 0.5 ({t}/{T})^2\big).$$
  • At time  $t = T = 2 \ \rm ms$  the step response reaches its final value  $0.25$.
  • For  $t = T/2 = 1 \ \rm ms$  the numerical value  $3/16 \; \underline{\: = \: 0.1875}$ is obtained.
  • Please note that the step response  $σ(t)$  as well as the step function  $γ(t)$  has no unit.


rechts

(4)  The step response  $σ(t)$  is the integral over the impulse response  $h(t)$.

  • Thus,  $h(t)$  is obtained from  $σ(t)$  by differentiation with respect to time.
  • n the range  $0 < t < T$  therefore the following is valid:
$$h(t) = \frac{{\rm d}\hspace{0.1cm}\sigma(t)}{{\rm d}t}= 0.5 \cdot\left( \frac{1}{T} - 0.5 (\frac{2t}{T^2})\right) = \frac{0.5}{T} \cdot (1- \frac{t}{T})$$
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 1\, ms}) = h(t = T/2) = \frac{0.25}{T} \hspace{0.15cm}\underline{= 125 \cdot{1}/{ {\rm s} } },$$
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 2\, ms}) = h(t = T) \hspace{0.15cm}\underline{= 0}.$$
  • For  $t < 0$  and  $t ≥ T$  this,  $h(t)=0$, always holds.
  • The value  $h(t = 0)$  at exactly  $t = 0$  must be determined from the mean value between the left-hand and right-hand limits:
$$h(t=0) = {1}/{2} \cdot \left[ \lim_{\varepsilon \hspace{0.03cm} \to \hspace{0.03cm}0} h(- \varepsilon)+ \lim_{\varepsilon \hspace{0.03cm} \to \hspace{0.03cm} 0} h(+ \varepsilon)\right] = \left[ 0 + {0.5}/{T}\right] = {0.25}/{T}= 250 \cdot{1}/{ {\rm s} }.$$


rechts

(5)  The rectangular pulse  $x_2(t)$  can also be represented as the difference of two steps shifted by  $±T/2$ :

$$x_2(t) = A \cdot \big[\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big].$$
  • Hence, the output signal is equal to the difference of two step responses shifted by  $±T/2$ :
$$y_2(t) = A \cdot \big[\sigma(t + {T}/{2}) - \sigma(t - {T}/{2})\big].$$
  • For  $t = \: -T/2 = -1\ \rm ms$  the following holds:  $y_2(t) \;\underline{ = 0}$.
  • For the other time points considered the following is obtained as indicated in the graph:
$$y_2(t = 0) = A \cdot \big[\sigma(0.5 \cdot T) - \sigma(-0.5 \cdot T)\big] = {\rm 2\, V}\cdot \left[0.1875 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.375\, V}},$$
$$y_2(t = T/2) = y_2(t = 1\,{\rm ms}) =A \cdot \big[\sigma( T) - \sigma(0)\big] = {\rm 2\, V}\cdot \left[0.25 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.5\, V}},$$
$$y_2(t = T) = A \cdot \big[\sigma(1.5 \cdot T) - \sigma(0.5 \cdot T)\big] = {\rm 2\, V}\cdot \big[0.25 - 0.1875\big] \hspace{0.15cm}\underline{= {\rm 0.125\, V}}.$$