Difference between revisions of "Aufgaben:Exercise 2.5: Residual Redundancy with LZW Coding"

From LNTwww
Line 4: Line 4:
  
 
[[File:P_ID2446__Inf_A_2_5_neu.png|right|frame|Residual redundancy  $r(N)$  & approximation   $r\hspace{0.05cm}'(N)$  of three binary sources]]
 
[[File:P_ID2446__Inf_A_2_5_neu.png|right|frame|Residual redundancy  $r(N)$  & approximation   $r\hspace{0.05cm}'(N)$  of three binary sources]]
Wir gehen hier von einer binären Eingangsfolge der Länge  $N$  aus und  betrachten drei verschiedene binäre Nachrichtenquellen:
+
We assume here a binary input sequence of length  $N$  and consider three different binary message sources:
* $\rm BQ1$: &nbsp; Symbolwahrscheinlichkeiten&nbsp;  $p_{\rm A} = 0.89$&nbsp; und&nbsp; $p_{\rm B} = 0.11$, also unterschiedlich<br> &nbsp;  &#8658; &nbsp; Entropie&nbsp; $H = 0.5\text{ bit/Quellensymbol}$ &nbsp; &#8658; &nbsp; die Quelle ist redundant.
+
* $\rm BQ1$: &nbsp; Symbol probabilities&nbsp;  $p_{\rm A} = 0.89$&nbsp; and&nbsp; $p_{\rm B} = 0.11$, i.e. different<br> &nbsp;  &#8658; &nbsp; entropy &nbsp; $H = 0.5\text{ bit/source symbol}$ &nbsp; &#8658; &nbsp; the source is redundant.
* $\rm BQ2$:  &nbsp; $p_{\rm A} = p_{\rm B} = 0.5$&nbsp; (gleichwahrscheinlich)<br> &nbsp; &#8658; &nbsp; Entropie&nbsp; $H = 1\text{ bit/Quellensymbol}$ &nbsp; &#8658; &nbsp; die Quelle ist redundanzfrei.
+
* $\rm BQ2$:  &nbsp; $p_{\rm A} = p_{\rm B} = 0.5$&nbsp; (equally probable)<br> &nbsp; &#8658; &nbsp; entropy &nbsp; $H = 1\text{ bit/source symbol}$ &nbsp; &#8658; &nbsp; the source is redundancy-free.
* $\rm BQ3$: &nbsp;  Hier gibt es keine konkreten Angaben zur Statistik.&nbsp; <br>In der Teilaufgabe&nbsp; '''(6)'''&nbsp; sollen Sie die Entropie&nbsp; $H$&nbsp; dieser Quelle  abschätzen.
+
* $\rm BQ3$: &nbsp;  There is no concrete information on the statistics here.&nbsp; <br>In subtask&nbsp; '''(6)'''&nbsp; you are to estimate the entropy&nbsp; $H$&nbsp; of this source.
  
  
Für diese drei Quellen wurden per Simulation die jeweilige <i>Restredundanz</i>&nbsp; $r(N)$&nbsp; ermittelt, die nach der&nbsp; [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#Der_Lempel.E2.80.93Ziv.E2.80.93Welch.E2.80.93Algorithmus|Lempel&ndash;Ziv&ndash;Welch&ndash;Codierung]]&nbsp; in der Binärfolge verbleibt.&nbsp;  
+
For these three sources, the respective <i>residual redundancy</i>&nbsp; $r(N)$&nbsp; was determined by simulation, which remains in the binary sequence after&nbsp; [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#The_Lempel-Ziv-Welch_algorithm |Lempel&ndash;Ziv&ndash;Welch&ndash;coding]]&nbsp; in der Binärfolge verbleibt.&nbsp;  
  
Die Ergebnisse sind in der jeweils ersten Spalte obiger Tabelle für die Quellen
+
The results are shown in the first column of the above table for the sources
*$\rm BQ1$&nbsp; (gelbe Hinterlegung),  
+
*$\rm BQ1$&nbsp; (yellow background),  
*$\rm BQ2$&nbsp; (grüne Hinterlegung) und
+
*$\rm BQ2$&nbsp; (green background) and
*$\rm BQ3$&nbsp; (blaue Hinterlegung)  
+
*$\rm BQ3$&nbsp; (blue background)  
  
  
eingetragen, wobei wir uns bei der Simulation auf Folgenlängen&nbsp; $N &#8804; 50000$&nbsp; beschränkt haben.
+
whereby we have restricted ourselves to sequence lengths&nbsp; $N &#8804; 50000$&nbsp; in the simulation.
  
Die <i>relative Redundanz der Ausgangsfolge</i> &ndash; vereinfachend <i>Restredundanz</i> genannt &ndash;  kann aus
+
The <i>relative redundancy of the output sequence</i> &ndash; simplified called <i>residual redundancy</i> &ndash;  can be calculated from
* der Länge&nbsp;  $N$&nbsp;  der Eingangsfolge,
+
* the length&nbsp;  $N$&nbsp;  of the input sequence,
* der Länge&nbsp;  $L(N)$&nbsp;  der Ausgangsfolge und
+
* the length&nbsp;  $L(N)$&nbsp;  of the output sequence and
*der Entropie&nbsp;  $H$
+
*the entropy&nbsp;  $H$
  
  
in folgender Weise berechnet werden:
+
can be calculated in the following way:
 
:$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 -  \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$
 
:$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 -  \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$
  
Hierbei ist berücksichtigt, dass bei perfekter Quellencodierung die Länge der Ausgangsfolge bis auf den Wert&nbsp;  $L_{\rm min} = N &middot; H$&nbsp; herabgesenkt werden könnte.  
+
This takes into account that with perfect source coding the length of the output sequence could be lowered to the value&nbsp;  $L_{\rm min} = N &middot; H$&nbsp;.
*Bei nichtperfekter Quellencodierung  gibt&nbsp;  $L(n) - N &middot; H$&nbsp;  die verbleibende Redundanz (mit der Pseudo&ndash;Einheit "bit") an.  
+
*With non-perfect source coding,&nbsp;  $L(n) - N &middot; H$&nbsp;  gives the remaining redundancy (with the pseudo&ndash;unit "bit").  
*Nach Division durch&nbsp;  $L(n)$&nbsp;  erhält man die relative Redundanz&nbsp;  $r(n)$&nbsp;  mit dem Wertebereich zwischen Null und Eins; $r(n)$ sollte möglichst klein sein.
+
*After dividing by&nbsp;  $L(n)$&nbsp;  , one obtains the relative redundancy&nbsp;  $r(n)$&nbsp;  with the value range between zero and one; $r(n)$ should be as small as possible.
  
  
Eine zweite Kenngröße zur Effizienzmessung der LZW&ndash;Codierung ist der&nbsp;  <i>Komprimierungsfaktor</i>&nbsp;  $K(N)$, der als der Quotient der Längen von Ausgangs&ndash; und Eingangsfolge ebenfalls klein sein sollte:
+
A second parameter for measuring the efficiency of LZW coding is the&nbsp;  <i>compression factor</i>&nbsp;  $K(N)$, which should also be small as the quotient of the lengths of the output and input sequences:
 +
 
 
:$$K(N) = {L(N) }/{N} \hspace{0.05cm},$$
 
:$$K(N) = {L(N) }/{N} \hspace{0.05cm},$$
  
Im&nbsp;  [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#Quantitative_Aussagen_zur_asymptotischen_Optimalit.C3.A4t|Theorieteil]]&nbsp;  wurde gezeigt, dass die Restredundanz&nbsp;  $r(n)$&nbsp;  oft durch die Funktion
+
In the&nbsp;  [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#Quantitative_statements_on_asymptotic_optimality|theory section]]&nbsp;  it was shown that the residual redundancy&nbsp;  $r(n)$&nbsp;  is often given by the function
 
:$$r\hspace{0.05cm}'(N) =\frac {A}{{\rm lg}\hspace{0.1cm}(N)}
 
:$$r\hspace{0.05cm}'(N) =\frac {A}{{\rm lg}\hspace{0.1cm}(N)}
 
\hspace{0.5cm}{\rm mit}\hspace{0.5cm} A = 4 \cdot {r(N = 10000)}  
 
\hspace{0.5cm}{\rm mit}\hspace{0.5cm} A = 4 \cdot {r(N = 10000)}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
gut angenähert wird.  
+
is well approximated.
  
*Diese Näherung&nbsp;  $r\hspace{0.05cm}'(N)$&nbsp;  ist für&nbsp;  $\rm BQ1$&nbsp;  in der zweiten Spalte obiger Tabelle angegeben.
+
*This approximation&nbsp;  $r\hspace{0.05cm}'(N)$&nbsp;  is given for&nbsp;  $\rm BQ1$&nbsp;  in the second column of the table above.
* In den Teilaufgaben&nbsp;  '''(4)'''&nbsp;  und&nbsp;  '''(5)'''&nbsp;  sollen Sie die Approximation für die Quellen&nbsp;  $\rm BQ2$&nbsp;  und&nbsp;  $\rm BQ3$&nbsp; vornehmen.
+
* In subtasks&nbsp;  '''(4)'''&nbsp;  and&nbsp;  '''(5)'''&nbsp;  you are to make the approximation for sources&nbsp;  $\rm BQ2$&nbsp;  and&nbsp;  $\rm BQ3$&nbsp;.
  
  
Line 53: Line 54:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel&nbsp;  [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch|Komprimierung nach Lempel, Ziv und Welch]].
+
*The task belongs to the chapter&nbsp;  [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch|Compression according to Lempel, Ziv and Welch]].
*Insbesondere wird  Bezug genommen auf die Seiten
+
*In particular, reference is made to the pages
:: [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#Restredundanz_als_Ma.C3.9F_f.C3.BCr_die_Effizienz_von_Codierverfahren|Restredrundanz als Maß für die Effizienz von Codierverfahren]],
+
:: [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#Remaining_redundancy_as_a_measure_for_the_efficiency_of_coding_methods|Residual redundancy as a measure for the efficiency of coding methods]],
:: [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#Effizienz_der_Lempel.E2.80.93Ziv.E2.80.93Codierung|Effizienz der Lempel-Ziv-Codierung]] sowie
+
:: [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#Efficiency_of_Lempel-Ziv_coding|Efficiency of Lempel-Ziv coding]] and
:: [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#Quantitative_Aussagen_zur_asymptotischen_Optimalit.C3.A4t|Quantitative Aussagen zur asymptotischen Optimalität]].   
+
:: [[Information_Theory/Komprimierung_nach_Lempel,_Ziv_und_Welch#Quantitative_statements_on_asymptotic_optimality|Quantitative statements on asymptotic optimality]].   
*Die Beschreibungsgrößen&nbsp;  $K(N)$&nbsp;  und&nbsp;  $r(N)$&nbsp;  hängen deterministisch zusammen.
+
*The descriptive variables&nbsp;  $K(N)$&nbsp;  and&nbsp;  $r(N)$&nbsp;  are deterministically related.
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Mit welchem Parameter&nbsp; $A$&nbsp; wurde die Näherung&nbsp; $r\hspace{0.05cm}'(N)$&nbsp; der Restredundanz für die Binärquelle&nbsp; $\rm BQ1$&nbsp; erstellt?
+
{With which parameter&nbsp; $A$&nbsp; was the approximation&nbsp; $r\hspace{0.05cm}'(N)$&nbsp; of the residual redundancy for the binary source&nbsp; $\rm BQ1$&nbsp; created?
 
|type="{}"}
 
|type="{}"}
 
$A \ = \ $  { 1.06 3% }
 
$A \ = \ $  { 1.06 3% }
  
  
{Wie groß muss&nbsp; $N = N_2$&nbsp; bei&nbsp;  $\rm BQ1$&nbsp; mindestens sein, damit die Restredundanz die Bedingung&nbsp; $r(N) &asymp; r\hspace{0.05cm}'(N) \le 5\%$&nbsp;   erfüllt?  
+
{What is the minimum size of&nbsp; $N = N_2$&nbsp; for&nbsp;  $\rm BQ1$&nbsp; so that the residual redundancy satisfies the condition&nbsp; $r(N) &asymp; r\hspace{0.05cm}'(N) \le 5\%$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$N_{2} \ =  \ $ { 1.58 3% } $\ \cdot 10^{21}$
 
$N_{2} \ =  \ $ { 1.58 3% } $\ \cdot 10^{21}$
  
  
{Wie groß muss&nbsp; $N = N_3$&nbsp;  bei&nbsp;  $\rm BQ1$&nbsp; mindestens sein, damit der Komprimierungsfaktor&nbsp; $K(N)= L(N)/N$&nbsp; nicht größer ist als&nbsp; $0.6$?
+
{What is the minimum size of&nbsp; $N = N_3$&nbsp;  at&nbsp;  $\rm BQ1$&nbsp; so that the compression factor&nbsp; $K(N)= L(N)/N$&nbsp; is not greater than&nbsp; $0.6$?
 
|type="{}"}
 
|type="{}"}
 
$N_{3} \ =  \ $ { 2.29 3% } $\ \cdot 10^{6}$
 
$N_{3} \ =  \ $ { 2.29 3% } $\ \cdot 10^{6}$
  
  
{Bestimmen Sie nun die Redundanznäherung&nbsp; $r\hspace{0.05cm}'(N)$&nbsp; für die redundanzfreie Binärquelle $\rm BQ2$, insbesondere:
+
{Now determine the redundancy approximation&nbsp; $r\hspace{0.05cm}'(N)$&nbsp; for the redundancy-free binary source $\rm BQ2$, in particular:
 
|type="{}"}
 
|type="{}"}
 
$r'(N = 50000)\ =  \ $ { 0.162 3% }
 
$r'(N = 50000)\ =  \ $ { 0.162 3% }
Line 88: Line 89:
  
  
{Welche Werte liefert die Redundanznäherung&nbsp; $r\hspace{0.05cm}'(N)$&nbsp; für die nicht näher spezifizierte Binärquelle&nbsp; $\rm BQ3$? Insbesondere:
+
{What values does the redundancy approximation&nbsp; $r\hspace{0.05cm}'(N)$&nbsp; yield for the unspecified binary source&nbsp; $\rm BQ3$? In particular:
 
|type="{}"}
 
|type="{}"}
 
$r'(N = 50000)\ =  \ $ { 0.289 3% }
 
$r'(N = 50000)\ =  \ $ { 0.289 3% }
Line 95: Line 96:
  
  
{Welche Quellenentropie&nbsp; $H$&nbsp; könnte&nbsp; $\rm BQ3$&nbsp; nach diesem Ergebnis besitzen?&nbsp; <i>Hinweis:</i> Es ist genau eine Antwort richtig.
+
{According to this result, what source entropy&nbsp; $H$&nbsp; could&nbsp; $\rm BQ3$&nbsp; ?&nbsp; <i>Hint:</i> Exactly one answer is correct.
 
|type="()"}
 
|type="()"}
- $H = 1.00 \ \rm bit/Quellensymbol$,
+
- $H = 1.00 \ \rm bit/source symbol$,
- $H = 0.75 \ \rm bit/Quellensymbol$,
+
- $H = 0.75 \ \rm bit/source symbol$,
- $H = 0.50 \ \rm bit/Quellensymbol$,
+
- $H = 0.50 \ \rm bit/source symbol$,
+ $H = 0.25 \ \rm bit/Quellensymbol$.
+
+ $H = 0.25 \ \rm bit/source symbol$.
  
  
Line 106: Line 107:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Die Näherung&nbsp; $r\hspace{0.05cm}'(N)$&nbsp; stimmt per Definition für die Folgenlänge&nbsp;  $N = 10000$&nbsp; mit der per Simulation ermittelten Restredundanz&nbsp; $r(N) = 0.265$&nbsp; exakt überein.  
 
'''(1)'''&nbsp; Die Näherung&nbsp; $r\hspace{0.05cm}'(N)$&nbsp; stimmt per Definition für die Folgenlänge&nbsp;  $N = 10000$&nbsp; mit der per Simulation ermittelten Restredundanz&nbsp; $r(N) = 0.265$&nbsp; exakt überein.  

Revision as of 19:03, 31 July 2021

Residual redundancy  $r(N)$  & approximation   $r\hspace{0.05cm}'(N)$  of three binary sources

We assume here a binary input sequence of length  $N$  and consider three different binary message sources:

  • $\rm BQ1$:   Symbol probabilities  $p_{\rm A} = 0.89$  and  $p_{\rm B} = 0.11$, i.e. different
      ⇒   entropy   $H = 0.5\text{ bit/source symbol}$   ⇒   the source is redundant.
  • $\rm BQ2$:   $p_{\rm A} = p_{\rm B} = 0.5$  (equally probable)
      ⇒   entropy   $H = 1\text{ bit/source symbol}$   ⇒   the source is redundancy-free.
  • $\rm BQ3$:   There is no concrete information on the statistics here. 
    In subtask  (6)  you are to estimate the entropy  $H$  of this source.


For these three sources, the respective residual redundancy  $r(N)$  was determined by simulation, which remains in the binary sequence after  Lempel–Ziv–Welch–coding  in der Binärfolge verbleibt. 

The results are shown in the first column of the above table for the sources

  • $\rm BQ1$  (yellow background),
  • $\rm BQ2$  (green background) and
  • $\rm BQ3$  (blue background)


whereby we have restricted ourselves to sequence lengths  $N ≤ 50000$  in the simulation.

The relative redundancy of the output sequence – simplified called residual redundancy – can be calculated from

  • the length  $N$  of the input sequence,
  • the length  $L(N)$  of the output sequence and
  • the entropy  $H$


can be calculated in the following way:

$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 - \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$

This takes into account that with perfect source coding the length of the output sequence could be lowered to the value  $L_{\rm min} = N · H$ .

  • With non-perfect source coding,  $L(n) - N · H$  gives the remaining redundancy (with the pseudo–unit "bit").
  • After dividing by  $L(n)$  , one obtains the relative redundancy  $r(n)$  with the value range between zero and one; $r(n)$ should be as small as possible.


A second parameter for measuring the efficiency of LZW coding is the  compression factor  $K(N)$, which should also be small as the quotient of the lengths of the output and input sequences:

$$K(N) = {L(N) }/{N} \hspace{0.05cm},$$

In the  theory section  it was shown that the residual redundancy  $r(n)$  is often given by the function

$$r\hspace{0.05cm}'(N) =\frac {A}{{\rm lg}\hspace{0.1cm}(N)} \hspace{0.5cm}{\rm mit}\hspace{0.5cm} A = 4 \cdot {r(N = 10000)} \hspace{0.05cm}.$$

is well approximated.

  • This approximation  $r\hspace{0.05cm}'(N)$  is given for  $\rm BQ1$  in the second column of the table above.
  • In subtasks  (4)  and  (5)  you are to make the approximation for sources  $\rm BQ2$  and  $\rm BQ3$ .





Hints:

Residual redundancy as a measure for the efficiency of coding methods,
Efficiency of Lempel-Ziv coding and
Quantitative statements on asymptotic optimality.
  • The descriptive variables  $K(N)$  and  $r(N)$  are deterministically related.


Questions

1

With which parameter  $A$  was the approximation  $r\hspace{0.05cm}'(N)$  of the residual redundancy for the binary source  $\rm BQ1$  created?

$A \ = \ $

2

What is the minimum size of  $N = N_2$  for  $\rm BQ1$  so that the residual redundancy satisfies the condition  $r(N) ≈ r\hspace{0.05cm}'(N) \le 5\%$ ?

$N_{2} \ = \ $

$\ \cdot 10^{21}$

3

What is the minimum size of  $N = N_3$  at  $\rm BQ1$  so that the compression factor  $K(N)= L(N)/N$  is not greater than  $0.6$?

$N_{3} \ = \ $

$\ \cdot 10^{6}$

4

Now determine the redundancy approximation  $r\hspace{0.05cm}'(N)$  for the redundancy-free binary source $\rm BQ2$, in particular:

$r'(N = 50000)\ = \ $

$r'(N = 10^6)\ = \ $

$r'(N = 10^{12})\ = \ $

5

What values does the redundancy approximation  $r\hspace{0.05cm}'(N)$  yield for the unspecified binary source  $\rm BQ3$? In particular:

$r'(N = 50000)\ = \ $

$r'(N = 10^6)\ = \ $

$r'(N = 10^{12})\ = \ $

6

According to this result, what source entropy  $H$  could  $\rm BQ3$  ?  Hint: Exactly one answer is correct.

$H = 1.00 \ \rm bit/source symbol$,
$H = 0.75 \ \rm bit/source symbol$,
$H = 0.50 \ \rm bit/source symbol$,
$H = 0.25 \ \rm bit/source symbol$.


Solution

(1)  Die Näherung  $r\hspace{0.05cm}'(N)$  stimmt per Definition für die Folgenlänge  $N = 10000$  mit der per Simulation ermittelten Restredundanz  $r(N) = 0.265$  exakt überein.

  • Damit ist
$$A = 4 \cdot r(N = 10000) =4 \cdot {0.265} \hspace{0.15cm}\underline{= 1.06} \hspace{0.05cm}. $$


(2)  Aus der Beziehung  ${A}/{\rm lg}\hspace{0.1cm}(N) ≤ 0.05$    ⇒    ${A}/{\rm lg}\hspace{0.1cm}(N) = 0.05$  folgt:

$${{\rm lg}\hspace{0.1cm}N_{\rm 2}} = \frac{A}{0.05} = 21.2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} N_{\rm 2} = 10^{21.2} \hspace{0.15cm}\underline{= 1.58 \cdot 10^{21}} \hspace{0.05cm}.$$


(3)  Allgemein gilt  $r(N) = 1 - {H}/{K(N)} \hspace{0.05cm}.$ 

  • $\rm BQ1$  hat die Entropie  $H = 0.5$ bit/Symbol. 
  • Daraus folgt wegen  $r(N) ≈ r\hspace{0.05cm}'(N)$  für  $K(N_3) = 0.6$:
$$r(N_{\rm c}) = 1 - \frac{0.5}{0.6} = 0.167 \hspace{0.1cm}\Rightarrow\hspace{0.1cm} {\rm lg}\hspace{0.1cm}N_{\rm 3} = \frac{A}{0.167} = 6.36 \hspace{0.1cm}\Rightarrow\hspace{0.1cm} N_{\rm 3} = 10^{6.36} \hspace{0.15cm}\underline{= 2.29 \cdot 10^{6}} \hspace{0.05cm}.$$


Ergebnisse für  $\rm BQ2$

(4)  Für  $N = 10000$  gilt  $r(N) ≈ r\hspace{0.05cm}'(N) = 0.19$:

$$\frac{A}{{\rm lg}\hspace{0.1cm}10000} = 0.19 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} A = 0.19 \cdot 4 = 0.76 \hspace{0.05cm}. $$
  • Die Ergebnisse sind in nebenstehender Tabelle zusammengefasst.
  • Man erkennt die sehr gute Übereinstimmung zwischen   $r(N)$  und  $r\hspace{0.05cm}'(N)$.
  • Die gesuchten Zahlenwerte sind in der Tabelle rot markiert:

$$r'(N = 50000)\hspace{0.15cm}\underline{ = 0.162},\hspace{0.3cm}r'(N = 10^{6})\hspace{0.15cm}\underline{ = 0.127},\hspace{0.3cm} r'(N = 10^{12})\hspace{0.15cm}\underline{ = 0.063}.$$

  • Für den Komprimierungsfaktor gilt (der Apostroph weist darauf hin, dass von der Näherung  $r\hspace{0.05cm}'(N)$  ausgegangen wurde):
$$K\hspace{0.05cm}'(N) = \frac{1}{1 - r\hspace{0.05cm}'(N)}\hspace{0.05cm}.$$
  • Damit gilt für die Länge des LZW–Ausgabestrings:
$$L\hspace{0.05cm}'(N) = K\hspace{0.05cm}'(N) \cdot N = \frac{N}{1 - r\hspace{0.05cm}'(N)}\hspace{0.05cm}.$$


Ergebnisse für  $\rm BQ3$

(5)  Nach ähnlicher Vorgehensweise wie in der Teilaufgabe  (4)  erhält man für die Binärquelle  $\rm BQ3$  den Anpassungsparameter  $A = 1.36$  und daraus die Ergebnisse gemäß der blau hinterlegten Tabelle.

Hinweis:   Die letzte Spalte dieser Tabelle ist nur bei Kenntnis der Teilaufgabe  (6)  verständlich. Dort wird gezeigt, dass die Quelle  $\rm BQ3$  die Entropie  $H = 0.25$ bit/Quellensymbol besitzt.

  • In diesem Fall gilt für den Komprimierungsfaktor:
$$K\hspace{0.05cm}'(N) = \frac{H}{1 - r\hspace{0.05cm}'(N)} = \frac{0.25}{1 - r'(N)} \hspace{0.05cm}.$$
  • Damit erhält man für die gesuchten Werte der Restredundanz:
$$r\hspace{0.05cm}'(N = 50000)\hspace{0.15cm}\underline{ = 0.289},\hspace{0.3cm}r\hspace{0.05cm}'(N = 10^{6})\hspace{0.15cm}\underline{ = 0.227},\hspace{0.3cm} r\hspace{0.05cm}'(N = 10^{12})\hspace{0.15cm}\underline{ = 0.113}.$$
  • Für  $N = 10^{12}$  weicht also der Komprimierungsfaktor  $(0.282)$  noch deutlich von der Entropie  $(0.25)$  ab, die erst für  $N \to \infty$  erreicht werden kann (Quellencodierungstheorem).



(6)  Die einzelnen Näherungen  $r\hspace{0.05cm}'(N)$  unterscheiden sich nur durch den Parameter  $A$.  Dabei haben wir festgestellt:

  1. Quelle  $\rm BQ1$  mit  $H = 0.50$   ⇒   $A = 1.06$   ⇒   entsprechend dem Angabenblatt,
  2. Quelle  $\rm BQ2$  mit  $H = 1.00$   ⇒   $A = 0.76$   ⇒   siehe Teilaufgabe  (4),
  3. Quelle  $\rm BQ3$  $(H$ unbekannt$)$: $A = 4 · 0.34 =1.36$   ⇒   entsprechend der letzten Spalte in der Tabelle.


  • Je kleiner die Entropie  $H$  ist, um so größer ist offensichtlich der Anpassungsfaktor  $A$  (und umgekehrt).
  • Da genau eine Lösung möglich ist, muss  $H = 0.25$  bit/Quellensymbol richtig sein   ⇒   Antwort 4.
  • Tatsächlich wurden bei der Simulation für die Quelle  $\rm BQ3$  die Wahrscheinlichkeiten  $p_{\rm A} = 0.96$  und  $p_{\rm B} = 0.04$    ⇒   $H ≈ 0.25$ verwendet.