Difference between revisions of "Aufgaben:Exercise 2.6Z: Synchronous Demodulator"
Line 9: | Line 9: | ||
− | + | Let the source signal consist of two harmonic oscillations with frequencies $f_2 = 2 \ \rm kHz$ and $f_5 = 5 \ \rm kHz$: | |
:$$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2 t )+ {1 \, \rm V} | :$$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2 t )+ {1 \, \rm V} | ||
\cdot {\rm sin}(\omega_5 t ) .$$ | \cdot {\rm sin}(\omega_5 t ) .$$ | ||
− | * | + | *This signal is multiplied by the dimensionless carrier signal $z(t) = \cos(\omega_{\rm T} \cdot T)$ of frequency $f_{\rm T} = 50 \ \rm kHz$. For ZSB–AM the dashed block is irrelevant so that the following holds for the transmit signal: |
:$$s(t) = q(t) \cdot {\rm cos}(\omega_{\rm T} t ) .$$ | :$$s(t) = q(t) \cdot {\rm cos}(\omega_{\rm T} t ) .$$ | ||
− | * | + | *In the synchronous demodulator, the receiver signal $r(t)$ – dentical to the transmit signal $s(t)$ in an ideal channel – is multiplied by the receive-site carrier signal $z_{\rm E}(t)$ multipliziert, where the following applies: |
:$$z_{\rm E}(t) = K \cdot {\rm cos}(\omega_{\rm T} t - \Delta \varphi ) .$$ | :$$z_{\rm E}(t) = K \cdot {\rm cos}(\omega_{\rm T} t - \Delta \varphi ) .$$ | ||
Revision as of 09:24, 20 September 2021
The depicted block diagram shows a transmission system
- with Double-Sideband Amplitude Modulation (ZSB-AM)
- and Synchronous Demodulation (SD).
Let the source signal consist of two harmonic oscillations with frequencies $f_2 = 2 \ \rm kHz$ and $f_5 = 5 \ \rm kHz$:
- $$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2 t )+ {1 \, \rm V} \cdot {\rm sin}(\omega_5 t ) .$$
- This signal is multiplied by the dimensionless carrier signal $z(t) = \cos(\omega_{\rm T} \cdot T)$ of frequency $f_{\rm T} = 50 \ \rm kHz$. For ZSB–AM the dashed block is irrelevant so that the following holds for the transmit signal:
- $$s(t) = q(t) \cdot {\rm cos}(\omega_{\rm T} t ) .$$
- In the synchronous demodulator, the receiver signal $r(t)$ – dentical to the transmit signal $s(t)$ in an ideal channel – is multiplied by the receive-site carrier signal $z_{\rm E}(t)$ multipliziert, where the following applies:
- $$z_{\rm E}(t) = K \cdot {\rm cos}(\omega_{\rm T} t - \Delta \varphi ) .$$
- Dieses Signal sollte nicht nur frequenzsynchron mit $z(t)$ sein, sondern auch phasensynchron – daher der Name "Synchrondemodulator".
- Der obige Ansatz berücksichtigt einen Phasenversatz zwischen $z(t)$ und $z_{\rm E}(t)$, der idealerweise $\Delta \varphi = 0$ sein sollte, sich bei realen Systemen aber oft nicht vermeiden lässt.
- Das Ausgangssignal $b(t)$ des zweiten Multiplizierers beinhaltet neben dem gewünschten NF-Anteil auch Anteile um die doppelte Trägerfrequenz.
- Durch einen idealen Tiefpass – zum Beispiel mit der Grenzfrequenz $f_{\rm T}$ – lässt sich das Sinkensignal $v(t)$ gewinnen, das im Idealfall gleich dem Quellensignal $q(t)$ sein sollte.
Die Multiplikation beim Sender mit dem Trägersignal $z(t)$ führt im Allgemeinen zu zwei Seitenbändern. Bei der Single-Sideband Modulation (ESB–AM) wird nur eines der beiden Bänder übertragen, zum Beispiel das untere Seitenband (USB). Damit erhält man bei idealem Kanal:
- $$r(t) = s(t)= {1 \, \rm V} \cdot {\rm cos}\big [(\omega_{\rm T} - \omega_2 )\cdot t \big ] - {0.5 \, \rm V} \cdot {\rm sin}\big [(\omega_{\rm T} - \omega_5 )\cdot t \big ] .$$
- Hier führt die Synchrondemodulation unter Berücksichtigung eines Phasenversatzes $\Delta \varphi$, der Konstante $K = 4$ sowie des nachgeschalteten Tiefpasses zu folgendem verfälschten Sinkensignal:
- $$v(t)= {1 \, \rm V} \cdot {1}/{2}\cdot 4 \cdot{\rm cos}( \omega_2 t - \Delta \varphi)+ {0.5 \, \rm V} \cdot {1}/{2}\cdot 4 \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
- $$\Rightarrow \hspace{0.5cm}v(t)= {2 \, \rm V} \cdot{\rm cos}( \omega_2 t - \Delta \varphi)+ {1 \, \rm V} \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
- Im Idealfall phasensynchroner Demodulation $(\Delta \varphi = 0)$ gilt wieder $v(t) = q(t).$
Please note:
- The task belongs to the chapter Linear Distortions.
- Die Thematik "amplitude modulation/synchronous demodulator" wird im Buch Modulation Methods noch ausführlich diskutiert.
- Gegeben sind die folgenden trigonometrischen Zusammenhänge:
- $$\cos^2(\alpha) = {1}/{2} \cdot \big [ 1 + \cos(2\alpha) \big ] \hspace{0.05cm}, $$
- $$\cos(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
Questions
Solution
- $$b(t) = r(t) \cdot z_{\rm E}(t)= q(t) \cdot z(t) \cdot z_{\rm E}(t)= K \cdot q(t)\cdot \cos^2(\omega_{\rm T} t).$$
- Mit der trigonometrischen Beziehung $\cos^2(\omega_{\rm T} t) = {1}/{2} \cdot\big[ 1 + \cos(2\omega_{\rm T} t)\big]$ erhält man
- $$b(t) = {K}/{2} \cdot q(t) + {K}/{2} \cdot q(t)\cdot \cos(2\omega_{\rm T} t).$$
- Der zweite Anteil liegt um die doppelte Trägerfrequenz ⇒ $2 f_{\rm T}$.
- Dieser wird durch den Tiefpass $($mit der Grenzfrequenz $ f_{\rm G} = f_{\rm T})$ entfernt.
- Damit erhält man: $v(t) = {K}/{2} \cdot q(t) .$
- Mit $\underline {K = 2}$ ergibt sich eine ideale Demodulation ⇒ $v(t) = q(t)$.
(2) Unter Berücksichtigung der Beziehung
- $$\cos(\omega_{\rm T} t) \cdot \cos(\omega_{\rm T} t - \Delta \varphi) = {1}/{2} \cdot \big[ \cos(\Delta \varphi)+ \cos(2\omega_{\rm T} t - \Delta \varphi) \big]$$
sowie des nachgeschalteten Tiefpasses, der wieder den Anteil um die doppelte Trägerfrequenz entfernt, erhält man hier mit $ {K = 2}$:
- $$v(t) = q(t) \cdot \cos(\Delta \varphi).$$
Richtig sind die Lösungsvorschläge 2 und 5:
- Ein Phasenversatz $\Delta \varphi$ führt hier nur zu einer frequenzunabhängigen Dämpfung und nicht zu Dämpfungs– oder Phasenverzerrungen.
- Ein Phasenversatz um $\varphi =\pm 60^\circ$ hat jeweils eine Halbierung des Signals zur Folge.
(3) Richtig ist hier der Lösungsvorschlag 4.
- Bei beiden Summanden tritt genau der gleiche Phasenversatz $\Delta \varphi$ auf, und es kommt hier zu Phasenverzerrungen:
- $$v(t)= {2 \, \rm V} \cdot{\rm cos}\big[ \omega_2 \cdot (t - \tau_2) \big]+ {1 \, \rm V} \cdot{\rm sin}\big[ \omega_5 t \cdot (t - \tau_5)\big],$$
- $${\rm wobei}\hspace{0.5cm}\tau_2 = \frac{\Delta \varphi}{\omega_2} \hspace{0.5cm}\ne \hspace{0.5cm} \tau_5 = \frac{\Delta \varphi}{\omega_5}.$$
- Ein Phasenversatz von $\varphi =60^\circ$ entsprechend $\pi/3$ führt hier zu den Verzögerungszeiten:
- $$\tau_2 = \frac{\pi/3}{2 \pi \cdot 2\,\,{\rm kHz }} \approx 83.3\,{\rm µ s }, \hspace{0.5cm} \tau_5 = \frac{\pi/3}{2 \pi \cdot 5\,\,{\rm kHz }} \approx 33.3\,{\rm µ s }.$$
- Das niederfrequentere Signal wird also stärker verzögert.