Difference between revisions of "Aufgaben:Exercise 2.7: Two-Way Channel once more"

From LNTwww
Line 122: Line 122:
 
  \big[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big].$$
 
  \big[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big].$$
  
*Die komplexen Exponentialfunktionen können mit dem  [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_magnitude_and_phase|Euler theorem]]  wie folgt umgewandelt werden:
+
*The complex exponential functions can be converted using the  [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_magnitude_and_phase|Euler theorem]]  as follows:
 
:$${\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T}
 
:$${\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T}
 
  \big[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
 
  \big[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
 
  \cdot \big[  {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot 2 \cos(\pi f T) .$$
 
  \cdot \big[  {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot 2 \cos(\pi f T) .$$
  
*Somit kann für das Ausgangsspektrum geschrieben werden:
+
*Hence, the following can be formulated for the output spectrum:
 
:$$Y_1(f) = Y_{11}(f) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
 
:$$Y_1(f) = Y_{11}(f) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
 
  , \; \; {\rm mit }  \; \;
 
  , \; \; {\rm mit }  \; \;
Line 133: Line 133:
 
f T} = 2T  \cdot \frac {\sin(2\pi f T) }{2\pi f T}.$$
 
f T} = 2T  \cdot \frac {\sin(2\pi f T) }{2\pi f T}.$$
  
[[File:P_ID925__LZI_A_2_7_a.png|right|frame|Eingangs– und Ausgangssignale]]
+
[[File:P_ID925__LZI_A_2_7_a.png|right|frame|Input and output signals]]
Hierbei ist die Beziehung  $\sin(\alpha) \cdot \cos(\alpha) = \sin(2\alpha)/2$  verwendet.  
+
Here, the relation  $\sin(\alpha) \cdot \cos(\alpha) = \sin(2\alpha)/2$  is used.  
  
*Die Fourierrücktransformation von  $Y_{11}$  führt zu einem um   $t = 0$  symmetrischen Rechteck der Breite  $2T$.  
+
*The inverse Fourier transform of  $Y_{11}$  results in a rectangle symmetric about   $t = 0$  and of width  $2T$.  
 
*Durch die Phasenfunktion wird dieser in den Bereich  $0$ ... $2T$  verschoben und das Ergebnis der Zeitbereichsberechnung bestätigt.
 
*Durch die Phasenfunktion wird dieser in den Bereich  $0$ ... $2T$  verschoben und das Ergebnis der Zeitbereichsberechnung bestätigt.
  
  
Trotz der Tatsache, dass $y_1(t)$ ebenso wie $x_1(t)$ rechteckförmig ist, liegen Verzerrungen vor:  
+
Despite the fact that $y_1(t)$ is rectangular just as $x_1(t)$, there are distortions:  
 
*Wegen  $T_y > T_x$  sind diese linear. Im interessierenden Frequenzbereich  $($das sind bei einem si–förmigem Spektrum alle Frequenzen$)$  ist  $|H(f)|$  nicht konstant. Also gibt es Dämpfungsverzerrungen.
 
*Wegen  $T_y > T_x$  sind diese linear. Im interessierenden Frequenzbereich  $($das sind bei einem si–förmigem Spektrum alle Frequenzen$)$  ist  $|H(f)|$  nicht konstant. Also gibt es Dämpfungsverzerrungen.
 
*Da zudem die Phase nicht im gesamten Bereich linear mit&nbsp; $f$ ansteigt, gibt es auch Phasenverzerrungen &nbsp; &rArr; &nbsp; Richtig sind die <u> Lösungsvorschläge 1, 3, 4 und 5</u>.
 
*Da zudem die Phase nicht im gesamten Bereich linear mit&nbsp; $f$ ansteigt, gibt es auch Phasenverzerrungen &nbsp; &rArr; &nbsp; Richtig sind die <u> Lösungsvorschläge 1, 3, 4 und 5</u>.

Revision as of 21:59, 20 September 2021

Magnitude frequency response and phase function of the two-way channel

As in  Exercise 2.6,  a two-way channel is considered whose impulse response is:

$$h(t) = \delta ( t - T_1) + \delta ( t - T_2).$$

In contrast to the general representation in task 2.6, the two attenuation factors are equal here:   $z_1 = z_2 = 1$.

  • For mobile communications, this corresponds to an echo at a distance of  $T_2 - T_1$  and of the same strength as the signal on the main path, for example.
  • For this, the transit time  $T_1$  is assumed.


Using the transit times $T_1 = 0$  and  $T_2 = T = 4 \ \rm ms$  considered in the subtasks  (1) ... (4),  the following is obtained for the frequency response of the two-way channel, whose magnitude is depicted in the upper graph:

$$H(f) = 1 + {\rm e}^{-{\rm j}\hspace{0.04cm}2 \pi f T} = 1 + \cos(2 \pi f T) - {\rm j} \cdot \sin(2 \pi f T)$$
$$\Rightarrow \hspace{0.4cm}|H(f)| = \sqrt{2\left(1 + \cos(2 \pi f T)\right)}= 2 \cdot |\cos(\pi f T)|.$$

The bottom graph shows the phase function:

$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) = \arctan \frac{\sin(2 \pi f T)}{1 + \cos(2 \pi f T)} = \arctan \big[\tan(\pi f T)\big].$$

The following trigonometric transformation was used here:

$$ \frac{\sin(2 \alpha)}{1 + \cos(2 \alpha)} = \tan(\alpha).$$

The bottom graph shows thep hase function for $T_1 = 0$  and  $T_2 = T = 4 \ \rm ms$:

  • In the frequency range  $|f| < 1/(2T)$,    $b(f)$  increases linearly:   $b(f) = \pi \cdot f \cdot T.$
  • Also in further sections of the phase function, the phase always increases linearly from  $-\pi/2$  to  $+\pi/2$ .


In the questions, $y_i(t)$  denotes the signal at the output of the two-way channel if the signal $x_i(t)$  is applied to the input  $( i = 1, 2, 3, 4)$.

These signals are examined as input signals:

  • a rectangular pulse  $x_1(t)$  with height  $1$  between  $t= 0$  and  $t= T$;
     $x_1(t) = 0$  holds for  $t < 0$  and  $t > T$  $($the value$0.5$ occurs at the two jump discontinuities, respectively$)$;
  • a rectangular pulse  $x_2(t)$  with height  $1$  in the range of  $0 \ \text{...} \ 2T$;
  • a periodic rectangular pulse  $x_3(t)$  with period  $T = T_0$:
$$x_3(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} { 0 < t < T/2,} \\ { T/2 < t < T,} \\ \end{array}$$
  • a periodic rectangular pulse  $x_4(t)$  with period  $T = 2T_0$:
$$x_4(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} { 0 < t < T,} \\ { T < t < 2T.} \\ \end{array}$$





Please note:

  • The task belongs to the chapter  Linear Distortions.
  • For subtasks (1) to (4),  $T_1 = 0$  and  $T_2 = T = 4 \ \rm ms$ hold.
  • In subtask (5), the case  $T_1 = 1 \ \rm ms$  and  $T_2 = 5 \ \rm ms$  is considered.



Questions

1

Compute the output signal  $y_1(t)$  for the input signal  $x_1(t)$. Which of the statements are true?

$y_1(t)$  is rectangular like  $x_1(t)$ .
$y_1(t)$  is triangular in shape.
The absolute pulse duration is  $2T$.
$y_1(t)$  exhibits attenuation distortions with respect to  $x_1(t)$ .
$y_1(t)$  exhibits phase distortions with respect to  $x_1(t)$ .

2

Compute the signal  $y_2(t)$. What values are obtained at times  $t= 0.5 T$,  $t= 1.5 T$  and  $t= 2.5 T$?

$y_2(t = 0.5T) \ = \ $

$y_2(t = 1.5T) \ = \ $

$y_2(t = 2.5T) \ = \ $

3

Compute the signal  $y_3(t)$. Check which statements are true.

$y_3(t)$  is undistorted with respect to  $x_3(t)$ .
$y_3(t)$  exhibits attenuation distortions with respect to  $x_3(t)$ .
$y_3(t)$  exhibits phase distortions with respect to  $x_3(t)$ .

4

Which statements are true for the output signal  $y_4(t)$ ?

$y_4(t)$  is undistorted with respect to  $x_4(t)$ .
$y_4(t)$  exhibits attenuation distortions with respect to  $x_4(t)$ .
$y_4(t)$  exhibits phase distortions with respect to  $x_4(t)$ .

5

Now  $T_1 = 1 \ \rm ms$  and  $T_2 = 5 \ \rm ms$ hold. What are the changes compared to the previous results?

The above statements regarding distortions are still valid.
Well-founded statements are only possible after a revaluation.
The combination  $T_1 = 1 \ \rm ms$  and  $T_2 = 5 \ \rm ms$  results in distortions for all signals.


Solution

(1)  The solution in the time domain leads faster to the final result:

$$y_1(t) = x_1(t) \star h(t) = x_1(t) \star \delta (t) + x_1(t) \star \delta (t - T) = x_1(t) + x_1(t-T).$$
  • Thus,  $y_1(t)$  is a rectangular pulse of height  $1$  and width  $2T$.
  • The same result – but in a more time-consuming way – is obtained by computing in the spectral domain:
$$Y_1(f) = X_1(f) \cdot H(f) = T \cdot \frac {\sin(\pi f T)}{\pi f T}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \cdot \big[ 1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big].$$
  • The complex exponential functions can be converted using the  Euler theorem  as follows:
$${\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \big[ 1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot \big[ {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot 2 \cos(\pi f T) .$$
  • Hence, the following can be formulated for the output spectrum:
$$Y_1(f) = Y_{11}(f) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} , \; \; {\rm mit } \; \; Y_{11}(f) = 2T \cdot \frac {\sin(\pi f T) \cdot \cos(\pi f T)}{\pi f T} = 2T \cdot \frac {\sin(2\pi f T) }{2\pi f T}.$$
Input and output signals

Here, the relation  $\sin(\alpha) \cdot \cos(\alpha) = \sin(2\alpha)/2$  is used.

  • The inverse Fourier transform of  $Y_{11}$  results in a rectangle symmetric about  $t = 0$  and of width  $2T$.
  • Durch die Phasenfunktion wird dieser in den Bereich  $0$ ... $2T$  verschoben und das Ergebnis der Zeitbereichsberechnung bestätigt.


Despite the fact that $y_1(t)$ is rectangular just as $x_1(t)$, there are distortions:

  • Wegen  $T_y > T_x$  sind diese linear. Im interessierenden Frequenzbereich  $($das sind bei einem si–förmigem Spektrum alle Frequenzen$)$  ist  $|H(f)|$  nicht konstant. Also gibt es Dämpfungsverzerrungen.
  • Da zudem die Phase nicht im gesamten Bereich linear mit  $f$ ansteigt, gibt es auch Phasenverzerrungen   ⇒   Richtig sind die Lösungsvorschläge 1, 3, 4 und 5.


(2)  Aufgrund der bereits in  (1)  angegebenen Gleichung

$$y_2(t) = x_2(t) + x_2(t-T)$$

erhält man einen stufenförmigen Verlauf entsprechend dem unteren Diagramm der obere Grafik.

Die gesuchten Zahlenwerte sind:   $y_2(t = 0.5 T) \hspace{0.15cm}\underline{= 1}, \hspace{0.3cm} y_2(t = 1.5 T) \hspace{0.15cm}\underline{= 2}, \hspace{0.3cm}y_2(t = 2.5 T) \hspace{0.15cm}\underline{ = 1}.$


Lösungen  (3)  und  (4)

(3)  Die Periodendauer  $T_0 = T$  des periodischen Signals  $x_3(t)$  ist genau so groß wie die Verzögerung auf dem zweiten Pfad. Deshalb ist  $y_3(t) = 2 \cdot x_3(t) $  und es sind keine Verzerrungen feststellbar.

Die Spektralbereichsberechnung führt zum gleichen Ergebnis.

  • $X_3(f)$  ist ein Linienspektrum mit Anteilen bei den Frequenzen  $f = 0$,  $f = \pm f_0 = \pm 1/T$,  $f = \pm 3f_0$,  usw..
  • Bei diesen diskreten Frequenzen gilt aber exakt:
$$|H(f)| = 2, \hspace{0.3cm} b(f) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\tau_{\rm P}(f) = 0.$$
  • Auch daraus folgt wieder  $y_3(t) = 2 \cdot x_3(t) $.
  • Richtig ist somit nur der Lösungsvorschlag 1.



(4)  Aus der unteren Skizze der zweiten Grafik geht hervor, dass  $y_4(t) = 1$  gegenüber  $x_4(t)$  verzerrt ist. Dabei handelt es sich um Dämpfungsverzerrungen  ⇒  Lösungsvorschlag 2, wie die folgende Überlegung zeigt.

  • Wegen  $T_0 = 2T$  weist das Signal  $x_4(t)$  die Grundfrequenz  $f_0 = 1/(2T)$ auf.
  • Bei allen ungeraden Vielfachen von  $f_0$  hat somit der Frequenzgang Nullstellen.
  • Die einzige verbleibende Spektrallinie von  $Y_4(f)$  liegt bei  $f = 0$, wobei gilt:
$$Y_4(f) = 2 \cdot 0.5 \cdot \delta (f) = 1 \cdot \delta (f) \hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_4(t) = 1.$$


(5)  Der Frequenzgang lautet nun mit  $T_1 = 1 \ \rm ms$,  $T_2 = 5 \ \rm ms$  und  $T = T_2 -T_1 = 4 \ \rm ms$:

$$H(f) = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}= \big[ 1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big]\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}.$$
  • Der Klammerausdruck beschreibt den bereits bisher betrachteten Frequenzgang.
  • Der zweite Term bewirkt eine zusätzliche Laufzeit um  $ \tau = T_1$, und es gilt für alle Signale  $(i = 1, 2, 3, 4)$:
$$y_i^{\rm (5)}(t) = y_i(t-T_1).$$

Alle Aussagen hinsichtlich der Verzerrungen sind weiter gültig. Dies entspricht dem Lösungsvorschlag 1.