Difference between revisions of "Aufgaben:Exercise 1.2Z: Sets of Digits"
From LNTwww
Line 25: | Line 25: | ||
Hints: | Hints: | ||
− | * | + | *The task belongs to the chapter [[Theory_of_Stochastic_Signals/Set_Theory_Basics|Set theory basics]]. |
− | * | + | *The topic of this chapter is illustrated with examples in the (German language) learning video[[Mengentheoretische_Begriffe_und_Gesetzmäßigkeiten_(Lernvideo)|Mengentheoretische Begriffe und Gesetzmäßigkeiten]] \Rightarrow. |
Revision as of 22:28, 21 November 2021
Let the universal set $G$ be the set of all digits between $1$ and $9$. Given are the following subsets:
- $$A = \big[\text{digits} \leqslant 3\big],$$
- $$ B = \big[\text{digits divisible by 3}\big],$$
- $$ C = \big[\text{digits 5, 6, 7, 8}\big],$$
Besides these, let other sets be defined:
- $$D = (A \cap \overline B) \cup (\overline A \cap B),$$
- $$E = (A \cup B) \cap (\overline A \cup \overline B), $$
- $$F = (A \cup C) \cap \overline B, $$
- $$G = (\overline A \cap \overline C) \cup (A \cap B \cap C).$$
First consider which digits belong to the sets $D$, $E$, $F$ and $H$ and then answer the following questions.
Justify your answers in terms of set theory.
Hints:
- The task belongs to the chapter Set theory basics.
- The topic of this chapter is illustrated with examples in the (German language) learning videoMengentheoretische Begriffe und Gesetzmäßigkeiten \Rightarrow.
Fragebogen
Musterlösung
Für die weiteren in der Aufgabe definierten Mengen gilt:
- $$ D = (A \cap \overline B) \cup (\overline A \cap B) =\big[\{1, 2, 3\} \cap \{1, 2, 4, 5, 7, 8\}\big] \cup \big[\{4, 5, 6, 7, 8, 9\} \cap \{3, 6, 9\}\big] = \{1, 2, 6, 9\},$$
- $$ E = (A \cup B) \cap (\overline A \cup \overline B) = (A \cap \overline A) \cup (A \cap \overline B) \cup (\overline A \cap B) \cup (\overline A \cap \overline B) = (A \cap \overline B) \cup (\overline A \cap B) = D = \{1, 2, 6, 9\},$$
- $$F = (A \cup C= \cap \overline B = \{1, 2, 3, 5, 6, 7, 8\} \cap \{1, 2, 4, 5, 7, 8\} = \{1, 2, 5, 7, 8\},$$
- $$H = (\bar A \cap \overline C) \cup (A \cap B \cap C) = (\overline A \cap \overline C) \cup \phi = \{4, 9\}.$$
(1) Richtig ist nur der Lösungsvorschlag 2:
- $A$ und $C$ haben kein gemeinsames Element.
- $A$ und $B$ beinhalten jeweils die $3$.
- $B$ und $C$ beinhalten jeweils die $6$.
(2) Richtig ist der Lösungsvorschlag 2:
- Keine Ziffer ist gleichzeitig in $A$, $B$ und $C$ enthalten ⇒ $ A \cap B \cap C = \phi$ ⇒ $ \overline{A \cap B \cap C} = \overline{\phi} = G$.
- Der erste Vorschlag ist dagegen falsch. Es fehlt die $4$.
(3) Richtig sind die Lösungsvorschläge 1, 2 und 4:
- Der erste Vorschlag ist richtig: Die Mengen $D$ und $E$ enthalten genau die gleichen Elemente und somit auch deren Komplementärmengen.
- Auch der zweite Vorschlag ist richtig: Allgemein, das heißt für beliebige $X$ und $B$ gilt: $X \cap \overline B \subset \overline B \ \Rightarrow$ Mit $X = A \cup C$ folgt somit $F \subset \overline B$.
- Auch der letzte Vorschlag ist richtig: $A = \{1, 2, 3\},$ $C = \{5, 6, 7, 8\}$ und $H = \{4, 9\}$ bilden ein "vollständiges System".
- Der dritte Vorschlag ist dagegen falsch, weil $B$ und $C$ nicht disjunkt sind.