Difference between revisions of "Aufgaben:Exercise 2.1Z: Different Signal Courses"
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID59__Sto_Z_2_1.png|right|frame| | + | [[File:P_ID59__Sto_Z_2_1.png|right|frame|Discrete value or continuous value?]] |
− | + | On the right are shown five signals. The first three signals $\rm (A)$, $\rm (B)$ and $\rm (C)$ are periodic and thus also deterministic, the two lower signals have stochastic character. The current value of these signals $x(t)$ is taken as a random quantity in each case. | |
− | + | Shown in detail are: | |
− | $\rm (A)$: | + | $\rm (A)$: a triangular-shaped periodic signal, |
− | $\rm (B)$: | + | $\rm (B)$: the signal $\rm (A)$ after one-way rectification, |
− | $\rm (C)$: | + | $\rm (C)$: a rectangular periodic signal, |
− | $\rm (D)$: | + | $\rm (D)$: a rectangular random signal, |
− | $\rm (E)$: | + | $\rm (E)$: the random signal $\rm (D)$ according to AMI coding; <br> here the "zero" is preserved, while each "one" is alternately encoded with "$+2\hspace{0.03cm}\rm V$" and "$-2\hspace{0.03cm} \rm V$". |
Line 24: | Line 24: | ||
− | + | Hints: | |
− | * | + | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable|From Random Experiment to Random Variable]]. |
Line 31: | Line 31: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {For which signals does the current value describe a discrete random variable? <br>Consider also the respective number of steps $M$. |
|type="[]"} | |type="[]"} | ||
- Signal $\rm (A)$, | - Signal $\rm (A)$, | ||
− | - | + | - signal $\rm (B)$, |
− | + | + | + signal $\rm (C)$, |
− | + | + | + signal $\rm (D)$, |
− | + | + | + signal $\rm (E)$. |
− | { | + | {For which signals is the current value (exclusively) a continuous random variable? |
|type="[]"} | |type="[]"} | ||
− | + | + | + signal $\rm (A)$, |
− | - | + | - signal $\rm (B)$, |
− | - | + | - signal $\rm (C)$, |
− | - | + | - signal $\rm (D)$, |
− | - | + | - signal $\rm (E)$. |
− | { | + | {Which random variables have a discrete and a continuous part? |
|type="[]"} | |type="[]"} | ||
- Signal $\rm (A)$, | - Signal $\rm (A)$, | ||
− | + | + | + signal $\rm (B)$, |
− | - | + | - signal $\rm (C)$, |
− | - | + | - signal $\rm (D)$, |
− | - | + | - signal $\rm (E)$. |
− | { | + | {For the signal $\rm (D)$ the relative frequency $h_0$ is determined empirically over $100\hspace{0.03cm}000$ binary symbols. <br>Name a lower bound for the probability that the determined value lies between $0.49$ and $0.51$ ? |
|type="{}"} | |type="{}"} | ||
${\rm Min\big[\ Pr(0.49}≤h_0≤0.51)\ \big] \ = \ $ { 0.975 3% } | ${\rm Min\big[\ Pr(0.49}≤h_0≤0.51)\ \big] \ = \ $ { 0.975 3% } | ||
− | { | + | {How many symbols $(N_\min)$ would you need to use for this investigation to ensure <br>that the probability for the event "The frequency so determined is between $0.499$ and $0.501$" is greater than $99\%$ ? |
|type="{}"} | |type="{}"} | ||
− | $N_\min \ = | + | $N_\min \ = \ $ { 2.5 3% } $\ \cdot 10^9$ |
Line 74: | Line 74: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''(1)''' Richtig sind die <u>Lösungsvorschläge 3, 4 und 5</u>: | '''(1)''' Richtig sind die <u>Lösungsvorschläge 3, 4 und 5</u>: |
Revision as of 22:35, 30 November 2021
On the right are shown five signals. The first three signals $\rm (A)$, $\rm (B)$ and $\rm (C)$ are periodic and thus also deterministic, the two lower signals have stochastic character. The current value of these signals $x(t)$ is taken as a random quantity in each case.
Shown in detail are:
$\rm (A)$: a triangular-shaped periodic signal,
$\rm (B)$: the signal $\rm (A)$ after one-way rectification,
$\rm (C)$: a rectangular periodic signal,
$\rm (D)$: a rectangular random signal,
$\rm (E)$: the random signal $\rm (D)$ according to AMI coding;
here the "zero" is preserved, while each "one" is alternately encoded with "$+2\hspace{0.03cm}\rm V$" and "$-2\hspace{0.03cm} \rm V$".
Hints:
- The exercise belongs to the chapter From Random Experiment to Random Variable.
Questions
Solution
- Die Zufallsgrößen $\rm (C)$ und $\rm (D)$ sind binär $(M= 2)$,
- während die Zufallsgröße $\rm (E)$ dreiwertig ist $(M= 3)$.
(2) Richtig ist allein der Lösungsvorschlag 1:
- Die Zufallsgröße $\rm (A)$ ist wertkontinuierlich und kann alle Werte zwischen $\pm 2 \hspace{0.03cm} \rm V$ mit gleicher Wahrscheinlichkeit annehmen.
- Alle anderen Zufallsgrößen sind wertdiskret.
(3) Richtig ist allein der Lösungsvorschlag 2:
- Nur die Zufallsgröße $\rm (B)$ hat einen diskreten Anteil bei $0\hspace{0.03cm}\rm V$ und
- außerdem noch eine kontinuierliche Komponente (zwischen $0\hspace{0.03cm} \rm V$ und $+2\hspace{0.03cm}\rm V)$.
(4) Nach dem Bernoullischen Gesetz der großen Zahlen gilt:
- $$\rm Pr\left(|\it h_{\rm 0} - \it p_{\rm 0}|\ge\it\varepsilon\right)\le\frac{\rm 1}{\rm 4\cdot \it N\cdot\it\varepsilon^{\rm 2}} = {\it p}_{\rm \hspace{0.01cm}Bernouilli}.$$
- Damit ist die Wahrscheinlichkeit, dass die relative Häufigkeit $h_0$ von der Wahrscheinlichkeit $p_0 = 0.5$ betragsmäßig um mehr als $0.01$ abweicht, mit $\varepsilon = 0.01$ berechenbar:
- $${\it p}_{\rm \hspace{0.01cm}Bernoulli} = \rm\frac{1}{4\cdot 100000\cdot 0.01^2}=\rm 2.5\% \hspace{0.5cm}\Rightarrow \hspace{0.5cm} {\rm Min}\big[({\rm Pr}(0.49 \le h_0 \le 0.51)\big] \hspace{0.15cm}\underline{= 0.975}.$$
(5) Mit $p_{\rm Bernoulli} = 1 - 0.99 = 0.01$ und $\varepsilon = 0.001$ gilt wiederum nach dem Gesetz der großen Zahlen:
- $${\it p}_{\rm \hspace{0.01cm}Bernoulli}\le\frac{\rm 1}{\rm 4\cdot \it N\cdot\it \varepsilon^{\rm 2}}.$$
- Aufgelöst nach $N$ erhält man:
- $$N\ge\frac{\rm 1}{\rm 4\cdot\it p_{\rm \hspace{0.01cm}Bernoulli}\cdot\it\varepsilon^{\rm 2}}=\rm \frac{1}{4\cdot 0.01\cdot 0.001^{2}}=\rm 0.25\cdot 10^8 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} {\it N}_{\rm min} \hspace{0.15cm}\underline{= 2.5\cdot 10^9}.$$