Difference between revisions of "Modulation Methods/Direct-Sequence Spread Spectrum Modulation"

From LNTwww
Line 30: Line 30:
 
   
 
   
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
This process is referred to as   '''Direct Sequence Spread Spectrum'''  $\rm (DS–SS)$.  In this context, please note in particular:  
+
This process is referred to as   '''Direct Sequence Spread Spectrum'''  $\rm (DS–SS)$  or PN band spreading. In this context, please note in particular:  
 
*In previous chapters, a major goal of modulation has always been to be as bandwidth-efficient as possible.
 
*In previous chapters, a major goal of modulation has always been to be as bandwidth-efficient as possible.
 
*Here, in contrast, we try to spread the signal over as wide a bandwidth as possible.  
 
*Here, in contrast, we try to spread the signal over as wide a bandwidth as possible.  
Line 88: Line 88:
  
  
Nach Schwellenwertentscheidung der Abtastwerte  $d(νT)$  erhält man trotzdem meist die gesuchten Amplitudenkoeffizienten.  Die vage Angabe  „meist” ist durch die Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  quantifizierbar.  Wegen
+
After thresholding the samples  $d(νT)$,  one nevertheless obtains mostly the sought amplitude coefficients.  The vague statement "mostly" is quantifiable by the bit error probability  $p_{\rm B}$.   Because of
 
:$$b(t) =  \big [ s(t) + n(t) \big ] \cdot c(t) = q(t) + n(t) \cdot c(t)$$
 
:$$b(t) =  \big [ s(t) + n(t) \big ] \cdot c(t) = q(t) + n(t) \cdot c(t)$$
und aufgrund der Tatsache, dass die statistischen Eigenschaften von weißem Rauschen  $n(t)$  durch die Multiplikation mit dem  $±1$–Signal  $c(t)$  nicht verändert werden, erhält man unabhängig vom Spreizgrad  $J$  wieder das gleiche Ergebnis wie für die  [[Modulation_Methods/Lineare_digitale_Modulation#Fehlerwahrscheinlichkeiten_-_ein_kurzer_.C3.9Cberblick|herkömmliche BPSK]]  ohne Bandspreizung/Bandstauchung:  
+
and due to the fact that the statistical properties of white noise  $n(t)$  are not changed by the multiplication with the  $±1$ signal  $c(t)$,  the same result is obtained again as for the  [[Modulation_Methods/Lineare_digitale_Modulation#Fehlerwahrscheinlichkeiten_-_ein_kurzer_.C3.9Cberblick|conventional BPSK]]  without band spreading/band compression, independent of the spreading degree  $J$ :  
 
:$$p_{\rm B} =  {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B} }/{N_{\rm 0} } } \hspace{0.05cm} \right )  \hspace{0.05cm}.$$ }}
 
:$$p_{\rm B} =  {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B} }/{N_{\rm 0} } } \hspace{0.05cm} \right )  \hspace{0.05cm}.$$ }}
  
==Zusätzlicher Sinusstörer um die Trägerfrequenz==
+
==Additional sinusoidal interferer around the carrier frequency==
 
<br>
 
<br>
Wir gehen weiterhin von nur einem einzigen Teilnehmer aus.&nbsp; Im Unterschied zu der Berechnung im letzten Abschnitt gibt es aber nun
+
We continue to assume only one participant. In contrast to the calculation in the last section, however, there are now
*neben dem AWGN–Rauschen &nbsp;$n(t)$&nbsp; auch
+
*in addition to the AWGN noise &nbsp;$n(t)$&nbsp; also
*einen schmalbandiger Störer &nbsp;$i(t)$&nbsp; um die Frequenz &nbsp;$f_{\rm I}$&nbsp; mit der Leistung $P_{\rm I}$ und der Bandbreite &nbsp;$B_{\rm I}$.   
+
*a narrowband interferer &nbsp;$i(t)$&nbsp; around the frequency &nbsp;$f_{\rm I}$&nbsp; with power $P_{\rm I}$ and bandwidth &nbsp;$B_{\rm I}$.   
  
  
Im Grenzfall &nbsp;$B_{\rm I} → 0$&nbsp; lautet das Leistungsdichtespektrum dieses „Sinusstörers”:  
+
In the limiting case &nbsp;$B_{\rm I} → 0$&nbsp; the power density spectrum of this "sinusoidal interferer" is:
 
:$${\it \Phi}_{\rm I}(f) =  {P_{\rm I}}/{2} \cdot  \big[ \delta ( f - f_{\rm I})  + \delta ( f +  f_{\rm I}) \big ] \hspace{0.05cm}.$$
 
:$${\it \Phi}_{\rm I}(f) =  {P_{\rm I}}/{2} \cdot  \big[ \delta ( f - f_{\rm I})  + \delta ( f +  f_{\rm I}) \big ] \hspace{0.05cm}.$$
  
Bei einem herkömmlichen Übertragungssystem ohne Bandspreizung/Bandstauchung würde ein solcher Schmalbandstörer die Fehlerwahrscheinlichkeit in unzumutbarer Weise erhöhen.&nbsp; Bei einem System mit Bandspreizung &nbsp; &rArr; &nbsp; PN–Modulation ist der störende Einfluss deutlich geringer, da
+
In a conventional transmission system without band spreading/band compression, such a narrowband interferer would increase the error probability to an unacceptable extent.&nbsp; In a system with band spreading &nbsp; &rArr; &nbsp; direct-sequence spread spectrum modulation, the interfering influence is significantly lower, since
*die Bandstauchung beim Empfänger hinsichtlich des Sinusstörers als Bandspreizung wirkt,  
+
*band compression acts as band spreading at the receiver with respect to the sinusoidal interferer,
*sich dadurch dessen Leistung auf ein sehr breites Frequenzband &nbsp;$B_c = 1/T_c \gg B$&nbsp; verteilt,
+
* thus its power is distributed over a very wide frequency band &nbsp;$B_c = 1/T_c \gg B$,&nbsp;  
*die zusätzlich störende Leistungsdichte im Nutzfrequenzband &nbsp;$(±B)$&nbsp; eher niedrig ist und durch eine geringfügige Erhöhung der AWGN–Rauschleistungsdichte &nbsp;$N_0$&nbsp; erfasst werden kann.
+
*the additional interfering power density in the useful frequency band &nbsp;$(±B)$&nbsp; is rather low and can be detected by a slight increase of the AWGN noise power density &nbsp;$N_0$.&nbsp;
  
  
Mit &nbsp;$T = J · T_c$&nbsp; und &nbsp;$B = 1/T$&nbsp; erhält man:  
+
With &nbsp;$T = J · T_c$&nbsp; and &nbsp;$B = 1/T$&nbsp; one obtains:  
:$$p_{\rm B} \approx  {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} +P_{\rm I} \cdot T_c} } \hspace{0.05cm} \right )  = {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} }  \cdot \left( \frac{1}{1+ P_{\rm I} \cdot T_c/N_0}\right )  } \hspace{0.05cm} \right )\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{SNR–Degradation:} \ \frac{1}{\big[1 + P_{\rm I}/(J · N_0 · B)\big]}\hspace{0.05cm}.$$
+
:$$p_{\rm B} \approx  {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} +P_{\rm I} \cdot T_c} } \hspace{0.05cm} \right )  = {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} }  \cdot \left( \frac{1}{1+ P_{\rm I} \cdot T_c/N_0}\right )  } \hspace{0.05cm} \right )\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{SNR degradation:} \ \frac{1}{\big[1 + P_{\rm I}/(J · N_0 · B)\big]}\hspace{0.05cm}.$$
  
Je größer der Spreizfaktor &nbsp;$J$&nbsp; ist, desto geringer ist die Erhöhung der Rauschleistung durch den Sinusstörer.  
+
The larger the spreading factor &nbsp;$J$,&nbsp; the smaller the increase in noise power due to the sinusoidal interferer.
  
''Anmerkung:'' &nbsp; Diese Tatsache hat dazu geführt, dass in der Literatur der Spreizfaktor &nbsp;$J$&nbsp; oft als Spreizgewinn bezeichnet wird, vergleiche beispielsweise [ZP85]<ref>Ziemer, R.; Peterson, R. L.: ''Digital Communication and Spread Spectrum Systems.'' New York: McMillon, 1985.</ref>.  
+
''Note:'' &nbsp; This fact has led to the spreading factor &nbsp;$J$&nbsp; being often referred to as spreading gain in the literature, compare for example [ZP85]<ref>Ziemer, R.; Peterson, R. L.: ''Digital Communication and Spread Spectrum Systems.'' New York: McMillon, 1985.</ref>.  
*In diesen Büchern geht es dabei meist um militärische Anwendungen der Bandspreizverfahren.
+
*These books are mostly about military applications of the band spreading methods.
* Manchmal ist sogar vom „günstigsten Störer” die Rede, nämlich dann, wenn die Degradation am größten ist.  
+
*Sometimes the "cheapest interferer" is mentioned, namely when the degradation is the largest.
*Mit solchen Anwendungen wollen wir uns hier aber nicht befassen.  
+
*However, we do not want to deal with such applications here.
  
  
Näherungsweise kann aber die obige Gleichung der Fehlerwahrscheinlichkeit auch angewendet werden, wenn eine ungespreizte Übertragung höherer Datenrate und ein Bandspreiz&ndash;System geringer Rate im gleichen Frequenzband arbeiten.&nbsp; Der störende Einfluss des erstgenannten Systems mit Bandbreite &nbsp;$B_{\rm I}$&nbsp; auf das&nbsp; ''Spread Spectrum System''&nbsp; lässt sich näherungsweise als&nbsp; ''Schmalbandstörer''&nbsp; behandeln, so lange &nbsp;$B_{\rm I}$&nbsp; hinreichend klein ist.  
+
Approximately, however, the above error probability equation can also be applied when an unspread transmission of higher data rate and a spread spectrum system of lower rate operate in the same frequency band.&nbsp; The interfering influence of the former system with bandwidth &nbsp;$B_{\rm I}$&nbsp; on the&nbsp; spread spectrum system&nbsp; can be treated approximately as a&nbsp; ''narrowband interferer''&nbsp; as long as &nbsp;$B_{\rm I}$&nbsp; is sufficiently small.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
*Bei AWGN–Rauschen (und auch vielen anderen Kanälen) lässt sich die Bitfehlerwahrscheinlichkeit durch Bandspreizung nicht verringern.  
+
*With AWGN noise (and also many other channels), the bit error probability cannot be reduced by band spreading.
*Im günstigsten Fall ergibt sich mit Bandspreizung die gleiche Bitfehlerwahrscheinlichkeit wie bei BPSK (ohne Spreizung).  
+
*In the best case, band spreading results in the same bit error probability as BPSK (without spreading).
*In unserem Sinne ist Bandspreizung eine erforderliche Maßnahme, um mehrere Teilnehmer gleichzeitig im gleichen Frequenzband versorgen zu können.  
+
*For our purposes, band spreading is a necessary measure to be able to supply several subscribers simultaneously in the same frequency band.
*Wir betrachten im Folgenden ausschließlich den CDMA–Aspekt und sprechen deshalb auch weiterhin vom Spreizfaktor &nbsp;$J$&nbsp; und nicht von einem Spreizgewinn. }}
+
*In the following, we will only consider the CDMA aspect and therefore continue to speak of the spreading factor &nbsp;$J$&nbsp; and not of a spreading gain. }}
  
  
 
==Exercises for the chapter==
 
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben: 5.2 Bandspreizung und Schmalbandstörer|Aufgabe 5.2: Bandspreizung und Schmalbandstörer]]
+
[[Aufgaben:Exercise_5.2:_Bandspreading_and_Narrowband_Interferer|Exercise 5.2: Bandspreading and Narrowband Interferer]]
  
[[Aufgaben:5.2Z Zur PN–Modulation|Aufgabe 5.2Z: Zur PN–Modulation]]
+
[[Aufgaben:Exercise_5.2Z:_About_PN_Modulation|Exercise 5.2Z: About PN Modulation]]
  
  

Revision as of 13:33, 29 November 2021

Block diagram and equivalent low-pass model


Block diagram and equivalent low-pass model of direct-sequence spread spectrum

One possibility for realizing a CDMA system is the so-called  direct-sequence spread spectrum, which is explained here on the basis of the block diagram.  The corresponding model in the equivalent low-pass range is shown below. 

In both models, the distortion-free channel  $($AWGN and possibly interference from other users, but no  intersymbol interference$)$  is highlighted in yellow and the  optimal receiver  $($matched filter plus threshold decider$)$ is highlighted in green.

$\text{This system can be characterized as follows:}$

  • If the multiplication with the spread signal  $c(t)$  at transmitter and receiver is omitted, the result is a conventional  BPSK system  with the carrier  $z(t)$  and AWGN noise, characterized by the additive Gaussian interference signal  $n(t)$.  The second interference component (interference from other participants) is omitted:   $i(t) = 0$.
  • For the following it is assumed  $($this is essential for direct-sequence spread spectrum!$)$ that the source signal  $q(t)$  has a rectangular NRZ curve.  Then the matched filter can be replaced by an integrator over a symbol duration  $T$    ⇒    "Integrate & Dump".  This is followed by the threshold decider.

Principle and properties of band spreading methods


In the following we consider direct-sequence spread spectrum in the  equivalent low-pass range. Thus, the multiplication with the carrier signals  $z(t)$  or  $2\cdot z(t)$  is omitted.

Low-pass model of direct-sequence spread spectrum KORREKTUR: low-pass model, source, sink
  • Characteristic for this type of modulation is the multiplication of the bipolar and rectangular digital signal  $q(t)$  with a pseudo-random  $±1$ spreading sequence  $c(t)$:
$$s(t) = q(t) \cdot c(t) \hspace{0.05cm}.$$
  • The duration  $T_c$  of a spreading chip is smaller than the duration  $T$  of a source symbol by the integer spreading factor  $J$,  so that the transmitted signal spectrum is
$$S(f) = Q(f) \star C(f)$$
is wider than the spectral function  $Q(f)$ by approximately this factor  $J$ .

This process is referred to as  Direct Sequence Spread Spectrum  $\rm (DS–SS)$  or PN band spreading. In this context, please note in particular:

  • In previous chapters, a major goal of modulation has always been to be as bandwidth-efficient as possible.
  • Here, in contrast, we try to spread the signal over as wide a bandwidth as possible.
  • The bandwidth expansion by  $J$  is necessary to allow several subscribers to use the same frequency band simultaneously.
  • Ideally,  $2^J$  suitable spreading sequences can be found.  This makes a CDMA system for  $2^J$  simultaneous users feasible.


Band spreading techniques also offer the following advantages:

  • One can transmit an additional low-rate  "DS–SS signal"  can be transmitted over a frequency band that is otherwise used by FDMA channels with a higher data rate without significantly disrupting the main applications.  The band spread signal virtually disappears under the noise level of these signals.
  • Targeted narrowband interferers ("sinusoidal interferers") can be combated well with this technique.  This military point of view was also decisive for the invention and further development of band spreading techniques.
  • Furthermore, the band spreading technique in general, but especially  frequency hopping  $($fast discrete change of the carrier frequency over a wide range$)$  and  chirp modulation  $($continuous change of the carrier frequency during a bit interval$)$  also offer the possibility of better transmission over frequency-selective channels.


Signal curves with a single participant


A disadvantage of direct-sequence spread spectrum modulation is that under unfavorable conditions interference can occur between the subscriber under consideration and other subscribers.

  • This case is taken into account in the model by the interference quantity  $i(t)$. 
  • We initially consider only one transmitter, so that  $i(t) = 0$  is to be set.


Signals of direct-sequence spread spectrum modulation in the noise-free case

$\text{Example 1:}$ 

The graph shows

  • above the source signal  $q(t)$  – marked by the blue background – and the (band spread) transmitted signal  $s(t)$,
  • at the bottom left the signal  $b(t)$  after band compression, and
  • bottom right the detection signal  $d(t)$  after the integrator, directly before the decision maker.


Further notes:

  1.   A discrete-time and normalized signal representation with rectangles spaced by the chip duration  $T_c$  is chosen.
  2.   The spreading factor is  $J = 8$.
  3.   As spreading sequence the  walsh function no. 7  is used.
  4.   All images are valid for the noise-free case   ⇒   $n(t) = 0$.


To the individual signal curves is to be noted:

  • The  $±1$ data signal  $q(t)$  is marked by the blue background.  After multiplication with the spread signal  $c(t)$,  the result is the transmitted signal  $J = 8$  which is higher in frequency by the factor  $s(t)$.
  • The spread signal  $c(t)$  is periodic with  $T = J · T_c$  and thus has a line spectrum.  In the first, fourth, and eighth data bits,  $c(t)=s(t)$, but at the other times,  $c(t) = - s(t)$.
  • After band compression at the receiver, i.e., after chipsynchronous multiplication by  $c(t) ∈ \{±1\}$   ⇒   $c^2(t) = 1$ , the signal  $b(t)$  is obtained.
  • In the distortion-free and noise-free case
$$b(t) = r(t) \cdot c(t) = s(t) \cdot c(t) = \big [ q(t) \cdot c(t) \big ] \cdot c(t) = q(t) \hspace{0.05cm}.$$
  • Integrating  $b(t)$  over one bit at a time yields a linearly increasing or linearly decreasing signal  $d(t)$.  The step curve in the right image is solely due to the discrete-time representation.
  • At the equidistant detection times the  $ν$–th amplitude coefficients  $a_ν$  of the source signal  $q(t)$ are valid in the distortion- and noise-free case:
$$ d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T}\hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t = a_\nu \in \{ +1, -1 \}\hspace{0.05cm}.$$


Signals of direct-sequence spread spectrum modulation for  $10 · \lg \ (E_{\rm B}/N_0) = 6 \ {\rm dB}$

$\text{Example 2:}$ 

The two lower graphs change significantly from the first example when AWGN noise is considered.

The AWGN parameter is assumed to be  $10 · \lg \ (E_{\rm B}/N_0) = 6 \ \rm dB$.    Then

  • das bandpassed signal  $b(t)$  is no longer sectionally constant, and
  • the detection signal  $d(t)$  is no longer linearly increasing or decreasing.


After thresholding the samples  $d(νT)$,  one nevertheless obtains mostly the sought amplitude coefficients.  The vague statement "mostly" is quantifiable by the bit error probability  $p_{\rm B}$.   Because of

$$b(t) = \big [ s(t) + n(t) \big ] \cdot c(t) = q(t) + n(t) \cdot c(t)$$

and due to the fact that the statistical properties of white noise  $n(t)$  are not changed by the multiplication with the  $±1$ signal  $c(t)$,  the same result is obtained again as for the  conventional BPSK  without band spreading/band compression, independent of the spreading degree  $J$ :

$$p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B} }/{N_{\rm 0} } } \hspace{0.05cm} \right ) \hspace{0.05cm}.$$

Additional sinusoidal interferer around the carrier frequency


We continue to assume only one participant. In contrast to the calculation in the last section, however, there are now

  • in addition to the AWGN noise  $n(t)$  also
  • a narrowband interferer  $i(t)$  around the frequency  $f_{\rm I}$  with power $P_{\rm I}$ and bandwidth  $B_{\rm I}$.


In the limiting case  $B_{\rm I} → 0$  the power density spectrum of this "sinusoidal interferer" is:

$${\it \Phi}_{\rm I}(f) = {P_{\rm I}}/{2} \cdot \big[ \delta ( f - f_{\rm I}) + \delta ( f + f_{\rm I}) \big ] \hspace{0.05cm}.$$

In a conventional transmission system without band spreading/band compression, such a narrowband interferer would increase the error probability to an unacceptable extent.  In a system with band spreading   ⇒   direct-sequence spread spectrum modulation, the interfering influence is significantly lower, since

  • band compression acts as band spreading at the receiver with respect to the sinusoidal interferer,
  • thus its power is distributed over a very wide frequency band  $B_c = 1/T_c \gg B$, 
  • the additional interfering power density in the useful frequency band  $(±B)$  is rather low and can be detected by a slight increase of the AWGN noise power density  $N_0$. 


With  $T = J · T_c$  and  $B = 1/T$  one obtains:

$$p_{\rm B} \approx {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} +P_{\rm I} \cdot T_c} } \hspace{0.05cm} \right ) = {\rm Q} \left( \hspace{-0.05cm} \sqrt { \frac{2 \cdot E_{\rm B}}{N_{\rm 0} } \cdot \left( \frac{1}{1+ P_{\rm I} \cdot T_c/N_0}\right ) } \hspace{0.05cm} \right )\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{SNR degradation:} \ \frac{1}{\big[1 + P_{\rm I}/(J · N_0 · B)\big]}\hspace{0.05cm}.$$

The larger the spreading factor  $J$,  the smaller the increase in noise power due to the sinusoidal interferer.

Note:   This fact has led to the spreading factor  $J$  being often referred to as spreading gain in the literature, compare for example [ZP85][1].

  • These books are mostly about military applications of the band spreading methods.
  • Sometimes the "cheapest interferer" is mentioned, namely when the degradation is the largest.
  • However, we do not want to deal with such applications here.


Approximately, however, the above error probability equation can also be applied when an unspread transmission of higher data rate and a spread spectrum system of lower rate operate in the same frequency band.  The interfering influence of the former system with bandwidth  $B_{\rm I}$  on the  spread spectrum system  can be treated approximately as a  narrowband interferer  as long as  $B_{\rm I}$  is sufficiently small.

$\text{Conclusion:}$ 

  • With AWGN noise (and also many other channels), the bit error probability cannot be reduced by band spreading.
  • In the best case, band spreading results in the same bit error probability as BPSK (without spreading).
  • For our purposes, band spreading is a necessary measure to be able to supply several subscribers simultaneously in the same frequency band.
  • In the following, we will only consider the CDMA aspect and therefore continue to speak of the spreading factor  $J$  and not of a spreading gain.


Exercises for the chapter


Exercise 5.2: Bandspreading and Narrowband Interferer

Exercise 5.2Z: About PN Modulation



References

  1. Ziemer, R.; Peterson, R. L.: Digital Communication and Spread Spectrum Systems. New York: McMillon, 1985.