Difference between revisions of "Aufgaben:Exercise 2.6: PN Generator of Length 5"
From LNTwww
m (Guenter moved page Aufgabe 2.6: PN-Generator der Länge 5 to Exercise 2.6: PN Generator of Length 5) |
|||
Line 100: | Line 100: | ||
− | [[Category:Theory of Stochastic Signals: Exercises|^2.5 | + | [[Category:Theory of Stochastic Signals: Exercises|^2.5 Generation of Discrete Random Variables^]] |
Revision as of 11:15, 1 December 2021
In der Grafik sehen Sie einen Pseudozufallsgenerator der Länge $L = 5$, der zur Erzeugung einer Binärfolge $\langle z_{\nu} \rangle$ eingesetzt werden soll.
- Zum Startzeitpunkt seien alle Speicherzellen mit Einsen vorbelegt.
- Zu jedem Taktzeitpunkt wird der Inhalt des Schieberegisters um eine Stelle nach rechts verschoben und der aktuell erzeugte Binärwert $z_{\nu}$ $(0$ oder $1)$ in die erste Speicherzelle eingetragen.
- Hierbei ergibt sich $z_{\nu}$ aus der Modulo-2-Addition zwischen $z_{\nu-3}$ und $z_{\nu-5}$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Erzeugung von diskreten Zufallsgrößen.
- Wir verweisen hier auch auf das Lernvideo Erläuterung der PN-Generatoren an einem Beispiel.
Fragebogen
Musterlösung
(1) Richtig ist der Lösungsvorschlag 2 ⇒ $G(D) = D^5 + D^3 +1$.
- Das Generatorpolynom $G(D)$ kennzeichnet die Rückführungen, die zur Modulo-2-Addition herangezogen werden.
- $D$ ist ein formaler Parameter, der eine Verzögerung um einen Takt angibt.
- $D^3$ kennzeichnet dann eine Verzögerung um drei Takte.
(2) Es ist $g_0 = g_3 = g_5 = 1$.
- Alle anderen Rückführungskoeffizienten sind $0$. Daraus folgt:
- $$(g_{\rm 5}\hspace{0.1cm}g_{\rm 4}\hspace{0.1cm}g_{\rm 3}\hspace{0.1cm}g_{\rm 2}\hspace{0.1cm}g_{\rm 1}\hspace{0.1cm}g_{\rm 0})=\rm (101001)_{bin}\hspace{0.15cm} \underline{=(51)_{oct}}.$$
(3) Da das Generatorpolynom $G(D)$ primitiv ist, erhält man eine M-Sequenz.
- Dementsprechend ist die Periodendauer maximal:
- $$P_{\rm max} = 2^{L}-1 \hspace{0.15cm}\underline {= 31}.$$
- Im Theorieteil ist in der Tabelle mit den PN-Generatoren maximaler Länge (M-Sequenzen) für den Grad $5$ die Konfiguration $(51)_{\rm oct}$ aufgeführt.
(4) Das reziproke Polynom lautet:
- $$G_{\rm R}(D)=D^{\rm 5}\cdot(D^{\rm -5}+\D^{\rm -3}+ 1)= D^{\rm 5}+D^{\rm 2}+1.$$
- Somit ist die Oktalkennung für diese Konfiguration $\rm (100101)_{bin}\hspace{0.15cm} \underline{=(45)_{oct}}.$
(5) Richtig sind die Lösungsvorschläge 1, 3 und 4:
- Die Ausgangsfolge der reziproken Realisierung $G_{\rm R}(D)$ eines primitiven Polynoms $G(D)$ ist immer ebenfalls eine M-Sequenz.
- Beide Folgen sind zueinander invers. Das bedeutet:
- Die Ausgangsfolge von $(45)_{\rm oct}$ ist gleich der Folge von $(51)_{\rm oct}$, wenn man diese von rechts nach links liest und zusätzlich eine Phase (zyklische Verschiebung) berücksichtigt.
- Voraussetzung ist wieder, dass nicht alle Speicherzellen mit Nullen vorbelegt sind.
- Unter dieser Bedingung weisen beide Folgen tatsächlich auch gleiche statistische Eigenschaften auf.