Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.4: Frequency and Phase Offset"

From LNTwww
m
Line 7: Line 7:
 
:A1=2V,f1=2kHz,
 
:A1=2V,f1=2kHz,
 
:A2=1V,f2=5kHz.
 
:A2=1V,f2=5kHz.
This signal is DSB amplitude modulated.
+
This signal is DSB amplitude-modulated.
  
 
*Thus,  the modulated signal  s(t)  has spectral components at  ±45 kHz,  ±48 kHz,  ±52 kHz  and  ±55 kHz.   
 
*Thus,  the modulated signal  s(t)  has spectral components at  ±45 kHz,  ±48 kHz,  ±52 kHz  and  ±55 kHz.   

Revision as of 17:25, 25 March 2022

Model of a synchronous demodulator

Consider the source signal  q(t)=A1cos(2πf1t)+A2sin(2πf2t)  with the signal parameters

A1=2V,f1=2kHz,
A2=1V,f2=5kHz.

This signal is DSB amplitude-modulated.

  • Thus,  the modulated signal  s(t)  has spectral components at  ±45 kHz,  ±48 kHz,  ±52 kHz  and  ±55 kHz. 
  • It is also known,  that the transmitter-side carrier  z(t)  is sinusoidal  (ϕ_{\rm T} = -90^\circ).


The demodulation to be performed with the circuit sketched here,  which is defined by the following parameters
("E"   ⇒   "empfägerseitig"   ⇒   "receiver-side"):

  1.   Amplitude  A_{\rm E}  (no unit),
  2.   frequency  f_{\rm E},
  3.   phase  ϕ_{\rm E}.


The  H_{\rm E}(f)  block represents an ideal,  rectangular low-pass filter,  which is suitably dimensioned.


Hints:

  • Take the following trigonometric transformations into account:
\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\right] \hspace{0.05cm},
\sin(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \sin(\alpha-\beta) + \sin(\alpha+\beta)\right] \hspace{0.05cm},
\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right] \hspace{0.05cm}.


Questions

1

Which of the following statements are true?

The demodulator would work better for DSB-AM with carrier.
The carrier would unnecessarily increase the transmit power.
The correct dimensioning of the low-pass  H_{\rm E}(f)  is essential.
One could also use an envelope demodulator.
Envelope demodulation is only applicable for  m \le 1 .

2

How should the signal parameters of the receiver-side carrier signal  z_{\rm E}(t)  be chosen,  so that  v(t) = q(t)  holds?

A_{\rm E} \ = \

f_{\rm E} \ \hspace{0.05cm} = \

\ \text{kHz}
\phi_{\rm E} \ = \

\ \text{deg}

3

Let  f_{\rm E} = f_{\rm T}  (no frequency offset).  Which sink signal  v(t)  results with  ϕ_{\rm E} = - 120^\circ?
Give its signal value at  t = 0 .

v(t = 0)\ = \

\ \text{V}

4

Let  f_{\rm E} = f_{\rm T}  again.  Which sink signal  v(t)  results with  ϕ_{\rm E} = 0^\circ?
Give the signal value at  t = 0.

v(t = 0)\ = \

\ \text{V}

5

Let  ϕ_{\rm E} = ϕ_{\rm T}  (no phase offset).  Which sink signal does one obtain with  Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T} = 1\text{ kHz}?
Which of the following statements are correct?

It holds that  v(t) = q(t) · \cos(2π · Δ\hspace{-0.05cm}f_{\rm T} · t).
v(t)  contains a spectral component at  2 kHz.
v(t)  contains a spectral component at 4 kHz.
v(t)  contains a spectral component at  6 kHz.


Solution

(1)  Answers 2, 3 and 5  are correct:

  • Envelope demodulation is not applicable for DSB-AM without carrier and a modulation depth of   m > 1.
  • The performance of the synchronous demodulator is not increased by the additional carrier component,  but only leads to an unnecessary increase in the transmit power to be applied.
  • The third statement is also correct.  The solution to  Exercise 2.4Z  shows the effects of omitting or incorrectly dimensioning  H_{\rm E} (f).


(2)  As the name  "synchronous demodulator"  already implies,  the signals   z(t)  and  z_{\rm E} (t)  must be synchronous in frequency and phase:

f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.
  • The carrier frequency  f_{\rm T}   at the transmitter can be determined from the transmission spectrum  S(f).  In the case of perfect synchronisation:
v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.
  • The second term is removed by the low-pass filter.  Thus,  with  A_{\rm E}\hspace{0.15cm}\underline{ = 2}v(t) = q(t) holds.


(3)  In the theory section,  it was shown that in general for DSB-AM and synchronous demodulation:

v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.
  • Even insufficient phase synchronisation does not lead to distortions,  only to a frequency-independent attenuation.
  • With  ϕ_{\rm T} =-90^\circ  and  ϕ_{\rm E} = -120^\circ  ⇒   Δϕ_{\rm T} = -30^\circ:
v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.


(4)  Now the phase difference is   Δϕ_{\rm T} = 90^\circ  and we get  v(t) \equiv 0.

  • It is pointless to discuss whether this is still a distortion-free system.
  • The result  v(t) \equiv 0  is due to the fact that cosine and sine are orthogonal functions.
  • This principle is made use of,  for example,  in what is known as   quadrature amplitude modulation..


(5)  The equation for the signal after multiplication is:

b(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.
  • This result can also be rewritten using the trigonometric transformation
\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]
as follows:
b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.
  • The second term lies in the vicinity of   2f_{\rm T}  for   f_{\rm E} = f_{\rm T}  and is removed by the low-pass.
  • With the frequency difference   Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T}= 1 kHz,  this leaves:
v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.
  • The first statement is correct.  This states that now the signal   v(t)  becomes quieter and louder again after demodulation according to a cosine function  (a  "beat").
  • The cosine component of   q(t)  with frequency   f_1 = 2\text{ kHz}  now becomes two components  (each of half the amplitude)  at   1\text{ kHz} and 3\text{ kHz}.
  • Similarly,  the sink signal does not include a component at  f_2 = 5\text{ kHz},  only components at   4\text{ kHz}  and at  6\text{ kHz}:
1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t) = 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t) + 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.

Answers 1, 3 and 4  are correct.