Difference between revisions of "Aufgaben:Exercise 2.4: Number Lottery (6 from 49)"

From LNTwww
Line 116: Line 116:
 
:$$\rm Pr(5\hspace{0.15cm}correct\hspace{0.1cm}numbers)=6\cdot Pr(12345\it X\rm ).$$
 
:$$\rm Pr(5\hspace{0.15cm}correct\hspace{0.1cm}numbers)=6\cdot Pr(12345\it X\rm ).$$
  
*$X$  kann hierbei für jede der Zahlen  $7$  bis  $49$  stehen, die wiederum alle gleichwahrscheinlich sind.  
+
*Here$X$ can stand for any of the numbers  $7$  to  $49$  , which again are all equally probable.  
*Mit  $\rm Pr(123457) = Pr(123456)$, dem Ergebnis der Teilaufgabe  '''(1)''', erhält man somit:  
+
*Thus, with  $\rm Pr(123457) = Pr(123456)$, the result of subtask  '''(1)''', we get:  
 
:$$\rm Pr(5\hspace{0.1cm}correct\hspace{0.1cm}numbers)=6\cdot 43\cdot\left({49 \atop {6}}\right)^{-1}=1.85\cdot10^{-5}.$$
 
:$$\rm Pr(5\hspace{0.1cm}correct\hspace{0.1cm}numbers)=6\cdot 43\cdot\left({49 \atop {6}}\right)^{-1}=1.85\cdot10^{-5}.$$
  
*Zu subtrahieren ist noch der Fall, dass auch die Zusatzzahl richtig gezogen wurde. Deshalb gilt:
+
*To subtract is still the case that also the additional number was drawn correctly. Therefore:
 
:$$\rm \Pr(5\hspace{0.15cm}correct\hspace{0.1cm}numbers\hspace{0.1cm}without\hspace{0.1cm}additional\hspace{0.1cm}number)\approx 18.5\cdot 10^{-6}-0.429\cdot 10^{-6}\hspace{0.15cm} \underline{\approx 18.1\cdot 10^{-6}}.$$
 
:$$\rm \Pr(5\hspace{0.15cm}correct\hspace{0.1cm}numbers\hspace{0.1cm}without\hspace{0.1cm}additional\hspace{0.1cm}number)\approx 18.5\cdot 10^{-6}-0.429\cdot 10^{-6}\hspace{0.15cm} \underline{\approx 18.1\cdot 10^{-6}}.$$
  
  
'''(5)'''  Nach einigen Überlegungen kommt man zum Ergebnis:  
+
'''(5)'''  After some considerations, we arrive at the result:
 
:$$\rm Pr(\it k\hspace{0.15cm} \rm correct\hspace{0.1cm}numbers)=\left({\it m \atop {\it k}}\right)\cdot\left({\it n-m \atop {m-\it k}}\right)\cdot\left({\it n \atop {m}}\right)^{-1}.$$
 
:$$\rm Pr(\it k\hspace{0.15cm} \rm correct\hspace{0.1cm}numbers)=\left({\it m \atop {\it k}}\right)\cdot\left({\it n-m \atop {m-\it k}}\right)\cdot\left({\it n \atop {m}}\right)^{-1}.$$
  
*Der letzte Term in dieser Gleichung gibt die Wahrscheinlichkeit für eine ganz bestimmte "$m$ aus $n$"–Kombination an.
+
*The last term in this equation gives the probability for a very specific "$m$ out of $n$" combination.
  
*Der erste Term beschreibt die Anzahl der Permutationen, dass von  $m$  gezogenen Zahlen genau  $k$  richtig sind. Für  $m = 6$  und  $k= 5$  ergibt das den Faktor  $6$.
+
*The first term describes the number of permutations that numbers drawn from  $m$  are exactly  $k$  correct. For  $m = 6$  and  $k= 5$  this gives the factor  $6$.
  
*Der mittlere Faktor gibt die Anzahl der Möglichkeiten an, dass alle restlichen gezogenen Zahlen  $($also  $m-k)$  eine der ungünstigen Zahlen  $($hierfür gibt es  $n-m)$  ist.  Für  $m = 6$  und  $k= 5$  ergibt dieser Term entsprechend  Punkt  '''(4)'''  den Wert  $43$.
+
*The middle factor gives the number of possibilities that all remaining drawn numbers  $($thus  $m-k)$  is one of the unfavorable numbers  $($for this there are  $n-m)$ .  For  $m = 6$  and  $k= 5$  this term gives the value  $43$ according to point  '''(4)''' .
  
*Als Sonderfall erhalten wir beim „6 aus 49“ mit  $k= 4$:
+
*As a special case we get for the "6 out of 49" with  $k= 4$:
 
:$$\rm Pr(4\hspace{0.15cm}correct\hspace{0.1cm}numbers)=\left({6 \atop {4}}\right)\cdot\left({43 \atop {2}}\right)\cdot\left({49 \atop {6}}\right)^{-1}\hspace{0.15cm} \underline{=0.969\cdot10^{-3}}.$$
 
:$$\rm Pr(4\hspace{0.15cm}correct\hspace{0.1cm}numbers)=\left({6 \atop {4}}\right)\cdot\left({43 \atop {2}}\right)\cdot\left({49 \atop {6}}\right)^{-1}\hspace{0.15cm} \underline{=0.969\cdot10^{-3}}.$$
  
  
'''(6)'''  Entsprechend der unter  '''(5)'''  berechneten allgemeinen Formel gilt weiter:
+
'''(6)'''  According to the general formula calculated in  '''(5)''' , it further holds:
 
:$$\rm Pr(3\hspace{0.15cm}correct\hspace{0.1cm}numbers)=\left({6 \atop {3}}\right)\cdot\left({43 \atop {3}}\right)\cdot\left({49 \atop {6}}\right)^{-1}\hspace{0.15cm} \underline{=18.1\cdot10^{-3}}.$$
 
:$$\rm Pr(3\hspace{0.15cm}correct\hspace{0.1cm}numbers)=\left({6 \atop {3}}\right)\cdot\left({43 \atop {3}}\right)\cdot\left({49 \atop {6}}\right)^{-1}\hspace{0.15cm} \underline{=18.1\cdot10^{-3}}.$$
  
  
  
'''(7)'''&nbsp; <u>Beide Aussagen</u> sind richtig:
+
'''(7)'''&nbsp; <u>Both statements</u> are correct:
*Die Wahrscheinlichkeiten sind nat&uuml;rlich gleich.&nbsp; Weil das viele wissen und diese ihr Wissen auch&nbsp; (zumindest sich selbst)&nbsp; demonstrieren wollen, spielen sehr viel mehr Menschen diese Kombination als eine eher unspektakul&auml;re.  
+
*The probabilities are equal, of course.&nbsp; Because many people know this and want to demonstrate their knowledge&nbsp; (at least to themselves)&nbsp; many more people play this combination than a rather unspectacular one.  
*Da aber der in einer Gewinnklasse auszuzahlende Betrag vorher festgelegt wird und dieser Gewinn dann durch eine gr&ouml;&szlig;ere Anzahl von Gewinnern zu teilen ist, bleibt f&uuml;r den Einzelnen nat&uuml;rlich weniger.
+
*However, since the amount to be paid out in a winning class is determined in advance and this win then has to be divided by a larger number of winners, there is of course less left for the individual.
*Da andererseits viele Lottospieler auf ihr Geburtsdatum setzen, ist die hier gew&auml;hlte Komination auch nicht so g&uuml;nstig.&nbsp; Die Zahlen „3“, „8“ und „9“ k&ouml;nnen sowohl den Tag als auch das Monat angeben und zudem beginnt fast bei allen Spielern das Geburtsjahr mit "19".
+
*On the other hand, since many lottery players bet on their date of birth, the combination chosen here is not so favorable either.&nbsp; The numbers "3", "8" and "9" can indicate both the day and the month and, moreover, almost all players' year of birth starts with "19".
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 17:40, 12 December 2021

Lottery ticket for  $\text{6/49 or 6 out of 49}$

For the number lotto the following conditions should apply:

Six winning numbers are drawn from the  $49$  numbers (balls) in a drum   ("6 out of 49"), then as the seventh ball the so-called additional number  $(Z)$.

Independently of this, a super number  $S \in \{0, \ 1,\hspace{0.1cm} \text{...} \hspace{0.1cm}, \ 9\}$  is selected at random.  If this number matches the final digit of the lottery ticket, the main prize is increased decisively.

In this task, the following winning classes are considered:

  • 6 correct numbers with a super number
  • 6 correct numbers without a super number
  • 5 correct numbers with a super number
  • 5 correct numbers without a super number
  • 4 correct numbers
  • 3 correct numbers


For subtasks  (1)  to  (6) , start from the upper lottery ticket:   The player has ticked the numbers "1" to "6" here.





Hints:

  • This exercise was designed around 2002. It is possible that the rules of the lottery have been changed in the meantime.



Questions

1

What is the probability for  $\text{6 correct numbers}$ ?

$ \rm Pr(6\hspace{0.1cm}correct\hspace{0.1cm}numbers) \ = \ $

$\ \cdot 10^{-9}$

2

What is the probability for  $\text{6 correct numbers plus super number}$ ?

$ \rm Pr(6R + S) \ = \ $

$\ \cdot 10^{-9}$

3

What is the probability for  $\text{5 correct numbers plus additional number}$ ?

$ \rm Pr(5R + Z) \ = \ $

$\ \cdot 10^{-6}$

4

What is the probability for  $\text{5 correct numbers without additional number}$ ?

$\rm Pr(5\hspace{0.1cm}correct\hspace{0.1cm}numbers)\ = \ $

$\ \cdot 10^{-6}$

5

What is the probability for  $\text{4 correct numbers}$ ?  What is the general result for  $k$  correct numbers in the  $m–\text{out of}–n$–lotto ?

$\rm Pr(4\hspace{0.1cm}correct\hspace{0.1cm}numbers)\ = \ $

$\ \cdot 10^{-3}$

6

What is the probability for  $\text{3 correct numbers}$ ?

$\rm Pr(3\hspace{0.1cm}correct\hspace{0.1cm}numbers)\ = \ $

$\ \cdot 10^{-3}$

7

Consider the odds of winning the bottom lottery ticket with the numbers  $3, \ 8, \ 9, \ 19, \ 21, \ 46$.  Which of the statements are true?

The probabilities calculated so far still apply.
He would very likely receive a larger winning sum with  $\text{6 correct numbers}$  than with the guess  $123456$.


Solution

(1)  Assuming that the player has ticked the numbers „1“ to „6“ , the following applies:

$${\rm \Pr}(6\hspace{0.1cm}{\rm correct\hspace{0.1cm}numbers})={\rm \Pr}(123456\ \cup 123465\cup \ \text{...} \ \ \cup 654321).$$
  • This takes into account that the order does not matter in the drawing.
  • In total, there are exactly  $6! = 1 · 2 · 3 · 4 · 5 · 6$  gequally probable permutations for the set of numbers:
$$\rm \Pr(6\hspace{0.1cm}correct\hspace{0.1cm}numbers)=6!\cdot Pr(123456).$$
  • The probability of the number „1“ being drawn as the first ball is  $1/49$. The probability of „2“ being drawn as the second ball is correspondingly  $1/48$  (since there is now one less ball in the drum).  Thus one receives as final result:
$$\rm Pr(123456)=\frac{1}{49}\cdot\frac{1}{48}\cdot \frac{1}{47} \cdot \frac{1}{46}\cdot \frac{1}{45} \cdot \frac{1}{44},$$
$$\rm Pr(6\hspace{0.1cm}correct\hspace{0.1cm}numbers)=\frac{1\cdot 2\cdot 3 \cdot 4 \cdot 5 \cdot 6}{49\cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44}.$$
  • This is exactly the inverse of „49 over 6“. It follows that:
$$\rm Pr(6\hspace{0.15cm}correct\hspace{0.1cm}numbers)=\left({49 \atop {6}}\right)^{-1}=13\hspace{0.08cm}983\hspace{0.08cm}816^{-1}\hspace{0.15cm} \underline{\approx71.5\cdot 10^{-9}}.$$


(2)  The probability that the final digit of a lottery ticket matches the super number is  $10\%$.

  • But since the drawing of the super number is independent of the normal drawing, we now get for the probability we are looking for
$$\text{ Pr(6R + S)} \hspace{0.15cm}\underline{\approx \ 7.15\cdot 10^{-9}}.$$


(3)  In what follows,  $Z$  stands for "additional number". Then holds:

$$\rm Pr(5\hspace{0.15cm}correct\hspace{0.1cm}numbers\hspace{0.1cm}plus\hspace{0.1cm}additional\hspace{0.1cm}number)={\rm Pr(12345} Z \ \cup \ {\rm 1234} Z\rm 6\cup \ \text{...} \ \cup \ Z {\rm 23456)}.$$
  • There are six permutations here. The probability for $\rm 12345Z$ is the same as for $123456$. It follows with the result of subtask  (1):
$$\rm Pr(5\hspace{0.15cm}correct\hspace{0.1cm}numbers\hspace{0.1cm}plus\hspace{0.1cm}additional\hspace{0.1cm}number)=6\cdot\left({49 \atop {6}}\right)^{-1}\hspace{0.15cm} \underline{=0.429\cdot10^{-6}}.$$


(4)  If we denote by  $X$  a drawn number that is not one of those checked, we can write for the probability we are looking for:

$${\rm \Pr(5\hspace{0.1cm}correct\hspace{0.1cm}numbers)=Pr(12345} X \ \cup \ {\rm 1234} X6\ \cup \ \text{...} \ \cup \ X23456).$$
  • There are six different possibilities for the location of  $X$ , all of which are equally probable. It follows that:
$$\rm Pr(5\hspace{0.15cm}correct\hspace{0.1cm}numbers)=6\cdot Pr(12345\it X\rm ).$$
  • Here$X$ can stand for any of the numbers  $7$  to  $49$  , which again are all equally probable.
  • Thus, with  $\rm Pr(123457) = Pr(123456)$, the result of subtask  (1), we get:
$$\rm Pr(5\hspace{0.1cm}correct\hspace{0.1cm}numbers)=6\cdot 43\cdot\left({49 \atop {6}}\right)^{-1}=1.85\cdot10^{-5}.$$
  • To subtract is still the case that also the additional number was drawn correctly. Therefore:
$$\rm \Pr(5\hspace{0.15cm}correct\hspace{0.1cm}numbers\hspace{0.1cm}without\hspace{0.1cm}additional\hspace{0.1cm}number)\approx 18.5\cdot 10^{-6}-0.429\cdot 10^{-6}\hspace{0.15cm} \underline{\approx 18.1\cdot 10^{-6}}.$$


(5)  After some considerations, we arrive at the result:

$$\rm Pr(\it k\hspace{0.15cm} \rm correct\hspace{0.1cm}numbers)=\left({\it m \atop {\it k}}\right)\cdot\left({\it n-m \atop {m-\it k}}\right)\cdot\left({\it n \atop {m}}\right)^{-1}.$$
  • The last term in this equation gives the probability for a very specific "$m$ out of $n$" combination.
  • The first term describes the number of permutations that numbers drawn from  $m$  are exactly  $k$  correct. For  $m = 6$  and  $k= 5$  this gives the factor  $6$.
  • The middle factor gives the number of possibilities that all remaining drawn numbers  $($thus  $m-k)$  is one of the unfavorable numbers  $($for this there are  $n-m)$ .  For  $m = 6$  and  $k= 5$  this term gives the value  $43$ according to point  (4) .
  • As a special case we get for the "6 out of 49" with  $k= 4$:
$$\rm Pr(4\hspace{0.15cm}correct\hspace{0.1cm}numbers)=\left({6 \atop {4}}\right)\cdot\left({43 \atop {2}}\right)\cdot\left({49 \atop {6}}\right)^{-1}\hspace{0.15cm} \underline{=0.969\cdot10^{-3}}.$$


(6)  According to the general formula calculated in  (5) , it further holds:

$$\rm Pr(3\hspace{0.15cm}correct\hspace{0.1cm}numbers)=\left({6 \atop {3}}\right)\cdot\left({43 \atop {3}}\right)\cdot\left({49 \atop {6}}\right)^{-1}\hspace{0.15cm} \underline{=18.1\cdot10^{-3}}.$$


(7)  Both statements are correct:

  • The probabilities are equal, of course.  Because many people know this and want to demonstrate their knowledge  (at least to themselves)  many more people play this combination than a rather unspectacular one.
  • However, since the amount to be paid out in a winning class is determined in advance and this win then has to be divided by a larger number of winners, there is of course less left for the individual.
  • On the other hand, since many lottery players bet on their date of birth, the combination chosen here is not so favorable either.  The numbers "3", "8" and "9" can indicate both the day and the month and, moreover, almost all players' year of birth starts with "19".