Difference between revisions of "Aufgaben:Exercise 5.6: OFDM Spectrum"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Allgemeine Beschreibung von OFDM
+
{{quiz-Header|Buchseite=Modulation_Methods/General_Description_of_OFDM
 
}}
 
}}
  
[[File:P_ID1659__A_5_6.png|right|frame|Real– und Imaginärteil des OFDM–Signals]]
+
[[File:P_ID1659__A_5_6.png|right|frame|Real and imaginary part of the OFDM signal]]
Wir betrachten in dieser Aufgabe ein OFDM–System mit  $N = 4$  Trägern.  
+
In this task, we consider an OFDM system with  $N = 4$  carriers.  
*Zur Vereinfachung beschränken wir uns auf ein einziges Zeitintervall $T$.   
+
*For simplicity, we restrict ourselves to a single time interval $T$.   
*Die Rahmendauer ist ebenfalls   $T_{\rm R} = T.$  
+
*The frame duration is also  $T_{\rm R} = T.$  
*Ein Guard–Intervall wird demnach nicht verwendet.
+
*Accordingly, a guard interval is not used.
  
  
Mit der Zusammenfassung von Impulsformung und Modulation durch die gemeinsame Funktion
+
With the summary of pulse shaping and modulation by the function
:$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm sonst} \\ \end{array} \right.$$
+
:$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm otherwise} \\ \end{array} \right.$$
ergibt sich das (komplexe) OFDM–Sendesignal im betrachteten Zeitintervall &nbsp;$(0 ≤ t < T)$&nbsp; zu:
+
the (complex) OFDM transmit signal in the considered time interval &nbsp;$(0 ≤ t < T)$&nbsp; results to:
 
:$$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$
 
:$$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$
Alle Trägerkoeffizienten &nbsp;$a_0$, &nbsp;$a_1$, &nbsp;$a_2$&nbsp; und &nbsp;$a_3$&nbsp; sind entweder $0$ oder $\pm 1$.  
+
All carrier coefficients &nbsp;$a_0$, &nbsp;$a_1$, &nbsp;$a_2$&nbsp; and &nbsp;$a_3$&nbsp; are either $0$ or $\pm 1$.  
  
Die Grafik zeigt den Real– und Imaginärteil des Sendesignals&nbsp; $s(t)$&nbsp; für eine gegebene Kombination von&nbsp; $a_0$, ... , $a_3$, <br>die in der Teilaufgabe&nbsp; '''(3)'''&nbsp; ermittelt werden soll.
+
The diagram shows the real and imaginary parts of the transmitted signal&nbsp; $s(t)$&nbsp; for a given combination of&nbsp; $a_0$, ... , $a_3$, <br>which is to be determined in subtask&nbsp; '''(3)'''.&nbsp;  
  
  
Line 26: Line 26:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM|Allgemeine Beschreibung von OFDM]].
+
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM|General Description of OFDM]].
*Bezug genommen wird insbesondere auf die Seiten&nbsp;   
+
*Reference is made in particular to the pages&nbsp;   
:&nbsp; &nbsp; &nbsp;[[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM#Das_Prinzip_von_OFDM_.E2.80.93_Systembetrachtung_im_Zeitbereich|OFDM-Systembetrachtung im Zeitbereich]],
+
:&nbsp; &nbsp; &nbsp;[[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain|OFDM - system consideration in the time domain]],
:&nbsp; &nbsp; &nbsp;[[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM#Systembetrachtung_im_Frequenzbereich_bei_kausalem_Grundimpuls|OFDM-Systembetrachtung im Frequenzbereich bei kausalem Grundimpuls]].
+
:&nbsp; &nbsp; &nbsp;[[Modulation_Methods/General_Description_of_OFDM#System_consideration_in_the_frequency_domain_with_causal_basic_pulse|OFDM-System consideration in the frequency domain with causal basic pulse]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Amplitude &nbsp;$s_0$&nbsp; des Sendesignals?
+
{What is the amplitude &nbsp;$s_0$&nbsp; of the transmitted signal?
 
|type="{}"}
 
|type="{}"}
 
$s_0 \ = \ $ { 5 3% } $\ \rm V$  
 
$s_0 \ = \ $ { 5 3% } $\ \rm V$  
  
{Wie groß ist die Symboldauer &nbsp;$T$?
+
{What is the symbol duration &nbsp;$T$?
 
|type="{}"}
 
|type="{}"}
 
$T \ = \ $ { 0.2 3%  } $\ \rm ms$
 
$T \ = \ $ { 0.2 3%  } $\ \rm ms$
  
{Welche Amplitudenkoeffizienten liegen der Grafik zugrunde?
+
{Which amplitude coefficients are the basis of the diagram?
 
|type="{}"}
 
|type="{}"}
 
$a_0 \ = \ $ { 0. }  
 
$a_0 \ = \ $ { 0. }  
Line 52: Line 52:
 
$a_3 \ = \ ${ -1.01--0.99 }
 
$a_3 \ = \ ${ -1.01--0.99 }
  
{Welche Aussagen sind bezüglich der OFDM&ndash;Betragsfunktion &nbsp;$|s(t)|$&nbsp; zutreffend?
+
{Which statements are true regarding the OFDM magnitude function &nbsp;$|s(t)|$?&nbsp;
 
|type="[]"}
 
|type="[]"}
- $|s(t)|$&nbsp; ist konstant ohne Begrenzung.
+
- $|s(t)|$&nbsp; is constant without limit.
+ $|s(t)|$&nbsp; ist konstant innerhalb der Symboldauer &nbsp;$T$.
+
+ $|s(t)|$&nbsp; is constant within the symbol duration &nbsp;$T$.
- $|s(t)|$&nbsp; besitzt einen cosinusförmigen Verlauf.
+
- $|s(t)|$&nbsp; has a cosine shape.
- $|s(t)|$&nbsp; besitzt einen sinusförmigen Verlauf.
+
- $|s(t)|$&nbsp; has a sinusoidal shape.
  
{Nun sei &nbsp;$a_0 = 0$, &nbsp;$a_1 = +1$, &nbsp;$a_2 = -1$&nbsp; und &nbsp;$a_3 = +1$.&nbsp; Berechnen Sie das Spektrum &nbsp;$S(f)$.&nbsp; Welche Werte ergeben sich für die genannten Frequenzen?
+
{Now let &nbsp;$a_0 = 0$, &nbsp;$a_1 = +1$, &nbsp;$a_2 = -1$&nbsp; and &nbsp;$a_3 = +1$.&nbsp; Calculate the spectrum &nbsp;$S(f)$.&nbsp; Which values result for the mentioned frequencies?
 
|type="{}"}
 
|type="{}"}
 
$S(f = 0)\ = \ $ { 0. } $\ \rm mV/Hz$
 
$S(f = 0)\ = \ $ { 0. } $\ \rm mV/Hz$
Line 66: Line 66:
 
$S(f = 15 \ \rm kHz) \ = \ $ { 1 1% } $\ \rm mV/Hz$
 
$S(f = 15 \ \rm kHz) \ = \ $ { 1 1% } $\ \rm mV/Hz$
  
{Interpretieren Sie Ihre Ergebnisse der Teilaufgaben&nbsp; '''(3)'''&nbsp; und&nbsp; '''(5)'''.&nbsp; Welche Aussagen treffen zu?
+
{Interpret your results of subtasks&nbsp; '''(3)'''&nbsp; and&nbsp; '''(5)'''.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ OFDM erfüllt das erste Nyquist–Kriterium im Zeitbereich.
+
+ OFDM satisfies the first Nyquist criterion in the time domain.
+ OFDM erfüllt das erste Nyquist–Kriterium im Frequenzbereich.
+
+ OFDM satisfies the first Nyquist criterion in the frequency domain.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Das Sendesignal&nbsp; $s(t)$&nbsp; ist eine komplexe Exponentialschwingung mit nur einer Frequenz.  
+
'''(1)'''&nbsp;  The transmitted signal&nbsp; $s(t)$&nbsp; is a complex exponential oscillation with only one frequency.
*Die Amplitude&nbsp; $s_0 \hspace{0.15cm}\underline { = 5\ \rm  V}$&nbsp; kann direkt der Grafik entnommen werden.
+
*The amplitude&nbsp; $s_0 \hspace{0.15cm}\underline { = 5\ \rm  V}$&nbsp; can be taken directly from the diagram.
  
  
 
   
 
   
'''(2)'''&nbsp;  Weiterhin erkennt man aus der Grafik die Symboldauer&nbsp; $T\hspace{0.15cm}\underline { = 0.2\ \rm  ms}$.  
+
'''(2)'''&nbsp;  Furthermore, the symbol duration&nbsp; $T\hspace{0.15cm}\underline { = 0.2\ \rm  ms}$ can be seen from the diagram.  
*Daraus ergibt sich die Grundfrequenz zu&nbsp; $f_0 = 1/T = 5\ \rm  kHz$.
+
*From this the basic frequency results to&nbsp; $f_0 = 1/T = 5\ \rm  kHz$.
  
  
  
'''(3)'''&nbsp;  Im dargestellten Beispiel gibt es nur eine einzige Frequenz, nämlich &nbsp;$3 · f_0$.  
+
'''(3)'''&nbsp;  In the example shown, there is only one frequency, namely &nbsp;$3 · f_0$.  
*Daraus folgt&nbsp; $a_0 = a_1 = a_2 \hspace{0.15cm}\underline { = 0}$&nbsp; sowie für den Bereich&nbsp; $0 ≤ t < T$:
+
*From this follows&nbsp; $a_0 = a_1 = a_2 \hspace{0.15cm}\underline { = 0}$&nbsp; and for the range&nbsp; $0 ≤ t < T$:
 
:$$s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).$$
 
:$$s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).$$
*Der Vergleich mit der Skizze&nbsp; $($Realteil: &nbsp; Minus–Cosinus, Imaginärteil: &nbsp; Minus–Sinus$)$&nbsp; liefert das folgende Ergebnis:  
+
*Comparison with the sketch&nbsp; $($real part: &nbsp; minus cosine, imaginary part: &nbsp; minus sine$)$&nbsp; gives the following result:
 
:$$a_3\hspace{0.15cm}\underline {= -1}.$$
 
:$$a_3\hspace{0.15cm}\underline {= -1}.$$
  
  
'''(4)'''&nbsp; Richtig ist der <u>zweite Lösungsvorschlag</u>:
+
'''(4)'''&nbsp;   The <u>second solution</u> is correct:
* Die Betragsfunktion lautet: &nbsp; $ |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.$
+
* The magnitude function is: &nbsp; $ |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.$
*Allerdings gilt diese Gleichung nur im Bereich der Symboldauer&nbsp; $T$.  
+
*However, this equation is valid only in the range of symbol duration&nbsp; $T$.  
*Das bedeutet: &nbsp; Das OFDM–Prinzip funktioniert nur bei einer Zeitbegrenzung auf&nbsp; $T$.
+
*This means: &nbsp; the OFDM principle works only with a time limit on&nbsp; $T$.
  
  
  
'''(5)'''&nbsp;  Allgemein gilt für das OFDM–Spektrum:
+
'''(5)'''&nbsp;  In general, for the OFDM spectrum:
 
:$$S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{si}}(\pi \cdot T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .$$
 
:$$S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{si}}(\pi \cdot T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .$$
*Die&nbsp; $\rm si$–Funktion ergibt sich aus der zeitlichen Begrenzung auf&nbsp; $T$, der letzte Term in der Summe aus dem Verschiebungssatz.  
+
*The&nbsp; $\rm si$ function results from the time limit on&nbsp; $T$, and the last term in the sum results from the displacement law.
*Durch die Nulldurchgänge der&nbsp; $\rm si$–Funktion im Abstand&nbsp; $f_0$&nbsp; sowie&nbsp; $\rm si(0) = 1$&nbsp; erhält man
+
*By the zero crossings of the&nbsp; $\rm si$ function at the distance&nbsp; $f_0$&nbsp; as well as&nbsp; $\rm si(0) = 1$&nbsp; one obtains
 
:$$S(f = μ · f_0) = s_0 · T · a_μ.$$  
 
:$$S(f = μ · f_0) = s_0 · T · a_μ.$$  
*Mit&nbsp; $s_0 = 5 \ \rm V$&nbsp; und&nbsp; $T = 0.2 \ \rm ms$  &nbsp; ⇒  &nbsp; $s_0 · T = 1\ \rm  mV/Hz$ &nbsp; &nbsp; gilt weiter:
+
*With&nbsp; $s_0 = 5 \ \rm V$&nbsp; and&nbsp; $T = 0.2 \ \rm ms$  &nbsp; ⇒  &nbsp; $s_0 · T = 1\ \rm  mV/Hz$ &nbsp; &nbsp; it further holds:
 
:$$ \mu = 0,\hspace{0.1cm} a_0 = 0\text{:}\hspace{0.95cm} S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.$$
 
:$$ \mu = 0,\hspace{0.1cm} a_0 = 0\text{:}\hspace{0.95cm} S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.$$
 
:$$\mu = 1, \hspace{0.1cm}a_1 = +1\text{:}\hspace{0.55cm} S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}},$$
 
:$$\mu = 1, \hspace{0.1cm}a_1 = +1\text{:}\hspace{0.55cm} S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}},$$
Line 110: Line 110:
  
  
'''(6)'''&nbsp;  <u>Beide Aussagen</u> sind richtig:
+
'''(6)'''&nbsp;  <u>Both statements</u> are correct:
* Die Orthogonalität bezüglich des Frequenzbereichs wurde bereits in der Teilaufgabe&nbsp; '''(5)'''&nbsp; gezeigt.
+
* The orthogonality with respect to the frequency domain has already been shown in subtask&nbsp; '''(5)'''.&nbsp;
*Die Orthogonalität hinsichtlich des Zeitbereichs ergibt sich aus der Begrenzung der einzelnen Symbole auf die Zeitdauer&nbsp; $T$.
+
*The orthogonality with respect to the time domain results from the limitation of the individual symbols to the time duration&nbsp; $T$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 09:59, 20 December 2021

Real and imaginary part of the OFDM signal

In this task, we consider an OFDM system with  $N = 4$  carriers.

  • For simplicity, we restrict ourselves to a single time interval $T$. 
  • The frame duration is also  $T_{\rm R} = T.$
  • Accordingly, a guard interval is not used.


With the summary of pulse shaping and modulation by the function

$$ g_\mu (t) = \left\{ \begin{array}{l} s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j2 \pi}} {\kern 1pt} \mu f_0 t} \quad 0 \le t < T, \\ 0 \quad \quad \quad \quad \quad {\rm otherwise} \\ \end{array} \right.$$

the (complex) OFDM transmit signal in the considered time interval  $(0 ≤ t < T)$  results to:

$$ s (t) = \sum\limits_{\mu = 0}^{N - 1} {a_{\mu} \cdot g_\mu (t )}.$$

All carrier coefficients  $a_0$,  $a_1$,  $a_2$  and  $a_3$  are either $0$ or $\pm 1$.

The diagram shows the real and imaginary parts of the transmitted signal  $s(t)$  for a given combination of  $a_0$, ... , $a_3$,
which is to be determined in subtask  (3)





Notes:

     OFDM - system consideration in the time domain,
     OFDM-System consideration in the frequency domain with causal basic pulse.


Questions

1

What is the amplitude  $s_0$  of the transmitted signal?

$s_0 \ = \ $

$\ \rm V$

2

What is the symbol duration  $T$?

$T \ = \ $

$\ \rm ms$

3

Which amplitude coefficients are the basis of the diagram?

$a_0 \ = \ $

$a_1 \ = \ $

$a_2 \ = \ $

$a_3 \ = \ $

4

Which statements are true regarding the OFDM magnitude function  $|s(t)|$? 

$|s(t)|$  is constant without limit.
$|s(t)|$  is constant within the symbol duration  $T$.
$|s(t)|$  has a cosine shape.
$|s(t)|$  has a sinusoidal shape.

5

Now let  $a_0 = 0$,  $a_1 = +1$,  $a_2 = -1$  and  $a_3 = +1$.  Calculate the spectrum  $S(f)$.  Which values result for the mentioned frequencies?

$S(f = 0)\ = \ $

$\ \rm mV/Hz$
$S(f = 5 \ \rm kHz) \ = \ $

$\ \rm mV/Hz$
$S(f = 10\ \rm kHz) \ = \ $

$\ \rm mV/Hz$
$S(f = 15 \ \rm kHz) \ = \ $

$\ \rm mV/Hz$

6

Interpret your results of subtasks  (3)  and  (5).  Which statements are true?

OFDM satisfies the first Nyquist criterion in the time domain.
OFDM satisfies the first Nyquist criterion in the frequency domain.


Solution

(1)  The transmitted signal  $s(t)$  is a complex exponential oscillation with only one frequency.

  • The amplitude  $s_0 \hspace{0.15cm}\underline { = 5\ \rm V}$  can be taken directly from the diagram.


(2)  Furthermore, the symbol duration  $T\hspace{0.15cm}\underline { = 0.2\ \rm ms}$ can be seen from the diagram.

  • From this the basic frequency results to  $f_0 = 1/T = 5\ \rm kHz$.


(3)  In the example shown, there is only one frequency, namely  $3 · f_0$.

  • From this follows  $a_0 = a_1 = a_2 \hspace{0.15cm}\underline { = 0}$  and for the range  $0 ≤ t < T$:
$$s(t) = a_3 \cdot s_0 \cdot {\rm{e}}^{ {\kern 1pt} {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2 \pi}} \hspace{0.04cm}\cdot \hspace{0.04cm} 3 f_0 \hspace{0.04cm}\cdot \hspace{0.04cm} t}= a_3 \cdot s_0 \cdot \cos ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \rm{j} \cdot a_3 \cdot s_0 \cdot \sin ({\rm{2 \pi}} \cdot 3 f_0 \cdot t).$$
  • Comparison with the sketch  $($real part:   minus cosine, imaginary part:   minus sine$)$  gives the following result:
$$a_3\hspace{0.15cm}\underline {= -1}.$$


(4)  The second solution is correct:

  • The magnitude function is:   $ |s(t)| = a_3 \cdot s_0 \cdot \sqrt{\cos^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t) + \sin^2 ({\rm{2 \pi}} \cdot 3 f_0 \cdot t)}= a_3 \cdot s_0.$
  • However, this equation is valid only in the range of symbol duration  $T$.
  • This means:   the OFDM principle works only with a time limit on  $T$.


(5)  In general, for the OFDM spectrum:

$$S (f) = s_0 \cdot T \cdot \sum\limits_{\mu = 0}^{N - 1} {a_{\mu } \cdot \,} {\rm{si}}(\pi \cdot T \cdot (f - \mu \cdot f_0 )) \cdot {\rm{e}}^{ - {\rm{j\hspace{0.04cm}\cdot \hspace{0.04cm}2\pi}} \hspace{0.04cm}\cdot \hspace{0.04cm}{T}/{2}\hspace{0.04cm}\cdot \hspace{0.04cm} (f - \mu \cdot f_0 )} .$$
  • The  $\rm si$ function results from the time limit on  $T$, and the last term in the sum results from the displacement law.
  • By the zero crossings of the  $\rm si$ function at the distance  $f_0$  as well as  $\rm si(0) = 1$  one obtains
$$S(f = μ · f_0) = s_0 · T · a_μ.$$
  • With  $s_0 = 5 \ \rm V$  and  $T = 0.2 \ \rm ms$   ⇒   $s_0 · T = 1\ \rm mV/Hz$     it further holds:
$$ \mu = 0,\hspace{0.1cm} a_0 = 0\text{:}\hspace{0.95cm} S (f = 0) \hspace{0.15cm}\underline {= 0},\hspace{8cm}.$$
$$\mu = 1, \hspace{0.1cm}a_1 = +1\text{:}\hspace{0.55cm} S (f = 5\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}},$$
$$ \mu = 2, \hspace{0.1cm}a_2 = -1\text{:}\hspace{0.55cm} S (f = 10\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= -1\,\,{\rm{mV/Hz}}},$$
$$ \mu = 3, \hspace{0.1cm}a_3 = +1\text{:}\hspace{0.55cm} S (f = 15\,\,{\rm{kHz}}) \hspace{0.15cm}\underline {= +1\,\,{\rm{mV/Hz}}}.$$


(6)  Both statements are correct:

  • The orthogonality with respect to the frequency domain has already been shown in subtask  (5)
  • The orthogonality with respect to the time domain results from the limitation of the individual symbols to the time duration  $T$.