Difference between revisions of "Aufgaben:Exercise 4.2: Rectangular Spectra"

From LNTwww
Line 5: Line 5:
 
[[File:P_ID695__Sig_A_4_2_neu.png|250px|right|Rechteckförmige Tiefpass- und Bandpass-Spektren (Aufgabe A4.2)]]
 
[[File:P_ID695__Sig_A_4_2_neu.png|250px|right|Rechteckförmige Tiefpass- und Bandpass-Spektren (Aufgabe A4.2)]]
  
Wir betrachten zwei Signale u(t) und w(t) mit jeweils rechteckförmigen Spektralfunktionen U(f) bzw. W(f). Es ist offensichtlich, dass
+
Wir betrachten zwei Signale $u(t)$ und $w(t)$ mit jeweils rechteckförmigen Spektralfunktionen $U(f)$ bzw. $W(f)$. Es ist offensichtlich, dass
 
   
 
   
 
$$u(t)  =  u_0  \cdot {\rm si} ( \pi \cdot {t}/{T_{ u}})$$
 
$$u(t)  =  u_0  \cdot {\rm si} ( \pi \cdot {t}/{T_{ u}})$$
  
ein TP–Signal ist, dessen zwei Parameter u0 und Tu in der Teilaufgabe a) zu bestimmen sind. Dagegen zeigt das Spektrum W(f), dass w(t) ein BP–Signal beschreibt.
+
ein TP–Signal ist, dessen zwei Parameter $u_0$ und $T_u$ in der Teilaufgabe 1) zu bestimmen sind. Dagegen zeigt das Spektrum $W(f)$, dass $w(t)$ ein BP–Signal beschreibt.
 
In dieser Aufgabe wird außerdem auf das BP–Signal
 
In dieser Aufgabe wird außerdem auf das BP–Signal
 
   
 
   
Line 15: Line 15:
 
- 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2\hspace{0.05cm} t)$$
 
- 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2\hspace{0.05cm} t)$$
  
Bezug genommen, dessen Spektrum in Aufgabe A4.1 ermittelt wurde. Es sei f2 = 2 kHz.
+
Bezug genommen, dessen Spektrum in Aufgabe A4.1 ermittelt wurde. Es sei $f_2$ = 2 kHz.
 
Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 4.1. Berücksichtigen Sie bei der Lösung die folgende trigonometrische Beziehung:
 
Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 4.1. Berücksichtigen Sie bei der Lösung die folgende trigonometrische Beziehung:
  
Line 23: Line 23:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Werte besitzen die Parameter u0 und Tu des TP-Signals?
+
{Welche Werte besitzen die Parameter $u_0$ und $T_u$ des TP-Signals?
 
|type="{}"}
 
|type="{}"}
 
$u_0 =$ { 2 } V
 
$u_0 =$ { 2 } V
 
$T_u =$ { 0.5 } ms
 
$T_u =$ { 0.5 } ms
  
{Berechnen Sie das BP–Signal w(t). Wie groß sind die beiden Signalwerte bei t = 0 und t = 62.5 μs?
+
{Berechnen Sie das BP–Signal $w(t)$. Wie groß sind die beiden Signalwerte bei $t$ = 0 und $t$ = 62.5 μs?
 
|type="{}"}
 
|type="{}"}
 
$w(t=0) = $ { 4 } V
 
$w(t=0) = $ { 4 } V
 
$w(t=62.5 \mu \text{s}) =$ { 0 } V
 
$w(t=62.5 \mu \text{s}) =$ { 0 } V
  
{Welche Aussagen sind bezüglich der BP–Signale d(t) und w(t) zutreffend? Begründen Sie Ihr Ergebnis im Zeitbereich.
+
{Welche Aussagen sind bezüglich der BP–Signale $d(t)$ und $w(t)$ zutreffend? Begründen Sie Ihr Ergebnis im Zeitbereich.
 
|type="[]"}
 
|type="[]"}
 
+ Die Signale d(t) und w(t) sind identisch.
 
+ Die Signale d(t) und w(t) sind identisch.
Line 48: Line 48:
 
[[File:P_ID704__Sig_A_4_2_b_neu.png|250px|right|Multiplikation mit Cosinus (ML zu Aufgabe A4.2)]]
 
[[File:P_ID704__Sig_A_4_2_b_neu.png|250px|right|Multiplikation mit Cosinus (ML zu Aufgabe A4.2)]]
  
'''1.''' a)  Die Zeit Tu, welche die erste Nullstelle des TP-Signals u(t) angibt, ist gleich dem Kehrwert der Breite des Rechteckspektrums, also 1/(2 kHz) = 0.5 ms. Die Impulsamplitude ist, wie in der Musterlösung zur Aufgabe A4.1 ausführlich dargelegt wurde, gleich der Rechteckfläche. Daraus folgt u0 = 2V.
+
'''1.''' a)  Die Zeit $T_u$, welche die erste Nullstelle des TP-Signals $u(t)$ angibt, ist gleich dem Kehrwert der Breite des Rechteckspektrums, also 1/(2 kHz) = 0.5 ms. Die Impulsamplitude ist, wie in der Musterlösung zur Aufgabe A4.1 ausführlich dargelegt wurde, gleich der Rechteckfläche. Daraus folgt $u_0$ = 2V.
  
b)  Das BP-Spektrum kann mit fT = 4 kHz wie folgt dargestellt werden:
+
'''2.''' Das BP-Spektrum kann mit $f_T$ = 4 kHz wie folgt dargestellt werden:
 
   
 
   
 
$$W(f)  \hspace{-0.15 cm} & = &  \hspace{-0.15 cm}U(f- f_{\rm T}) + U(f+ f_{\rm T}) = \\
 
$$W(f)  \hspace{-0.15 cm} & = &  \hspace{-0.15 cm}U(f- f_{\rm T}) + U(f+ f_{\rm T}) = \\
Line 58: Line 58:
 
Entsprechend dem Verschiebungssatz gilt dann für das dazugehörige Zeitsignal:
 
Entsprechend dem Verschiebungssatz gilt dann für das dazugehörige Zeitsignal:
 
   
 
   
$$w(t) \hspace{-0.15 cm} &  = & \hspace{-0.15 cm} 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) =  \\ & = &\hspace{-0.15 cm} 2 u_0
+
$$begin{align*}w(t) \hspace{-0.15 cm} &  = \hspace{-0.15 cm} 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) =  \\  
  \cdot {\rm si} ( \pi \frac{t}{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T}
+
& = \hspace{-0.15 cm} 2 u_0
t).$$
+
  \cdot {\rm si} ( \pi \frac{t}{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t).end{align*}$$
  
 
Die Grafik zeigt
 
Die Grafik zeigt
oben das TP-Signal u(t),
+
oben das TP-Signal $u(t)$,
dann die Schwingung c(t) = 2 · cos(2πfTt),
+
dann die Schwingung $c(t)$ = 2 · cos(2 $\pi fTt$ ),
unten das BP-Signal w(t) = u(t) · c(t).
+
unten das BP-Signal $w(t) = u(t) \cdot c(t)$.
Insbesondere erhält man zum Zeitpunkt t = 0:
+
Insbesondere erhält man zum Zeitpunkt $t = 0$:
 
   
 
   
 
$$w(t = 0)  =  2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$
 
$$w(t = 0)  =  2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$
  
Der Zeitpunkt t = 62.5 μs entspricht genau einer viertel Periodendauer des Signals c(t):
+
Der Zeitpunkt $t$ = 62.5 μs entspricht genau einer viertel Periodendauer des Signals $c(t)$:
 
   
 
   
 
$$  w(t = 62.5 \hspace{0.05cm}{\rm \mu s}) & = & 2 u_0 \cdot{\rm si} ( \pi \frac{62.5 \hspace{0.05cm}{\rm \mu s}}
 
$$  w(t = 62.5 \hspace{0.05cm}{\rm \mu s}) & = & 2 u_0 \cdot{\rm si} ( \pi \frac{62.5 \hspace{0.05cm}{\rm \mu s}}
Line 78: Line 78:
 
  4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.$$
 
  4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.$$
  
c)  Vergleicht man die Spektralfunktion W(f) dieser Aufgabe mit dem Spektrum D(f) in der Musterlösung zu Aufgabe A4.1, so erkennt man, dass w(t) und d(t) identische Signale sind. Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit f2 = 2 kHz kann für das hier betrachtete Signal geschrieben werden:
+
'''3.''' Vergleicht man die Spektralfunktion $W(f)$ dieser Aufgabe mit dem Spektrum $D(f)$ in der Musterlösung zu Aufgabe A4.1, so erkennt man, dass $w(t)$ und $d(t)$ identische Signale sind. Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit $f_2$ = 2 kHz kann für das hier betrachtete Signal geschrieben werden:
 
   
 
   
 
$$w(t )  =  4\hspace{0.05cm}{\rm V}
 
$$w(t )  =  4\hspace{0.05cm}{\rm V}

Revision as of 18:17, 19 April 2016

Rechteckförmige Tiefpass- und Bandpass-Spektren (Aufgabe A4.2)

Wir betrachten zwei Signale $u(t)$ und $w(t)$ mit jeweils rechteckförmigen Spektralfunktionen $U(f)$ bzw. $W(f)$. Es ist offensichtlich, dass

$$u(t) = u_0 \cdot {\rm si} ( \pi \cdot {t}/{T_{ u}})$$

ein TP–Signal ist, dessen zwei Parameter $u_0$ und $T_u$ in der Teilaufgabe 1) zu bestimmen sind. Dagegen zeigt das Spektrum $W(f)$, dass $w(t)$ ein BP–Signal beschreibt. In dieser Aufgabe wird außerdem auf das BP–Signal

$$d(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 \hspace{0.05cm}t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2\hspace{0.05cm} t)$$

Bezug genommen, dessen Spektrum in Aufgabe A4.1 ermittelt wurde. Es sei $f_2$ = 2 kHz. Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 4.1. Berücksichtigen Sie bei der Lösung die folgende trigonometrische Beziehung:

$$\sin (\alpha) \cdot \cos (\beta) = \frac{1}{2}\left[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\right].$$

Fragebogen

1

Welche Werte besitzen die Parameter $u_0$ und $T_u$ des TP-Signals?

$u_0 =$

V
$T_u =$

ms

2

Berechnen Sie das BP–Signal $w(t)$. Wie groß sind die beiden Signalwerte bei $t$ = 0 und $t$ = 62.5 μs?

$w(t=0) = $

V
$w(t=62.5 \mu \text{s}) =$

V

3

Welche Aussagen sind bezüglich der BP–Signale $d(t)$ und $w(t)$ zutreffend? Begründen Sie Ihr Ergebnis im Zeitbereich.

Die Signale d(t) und w(t) sind identisch.
d(t) und w(t) unterscheiden sich durch einen konstanten Faktor.
d(t) und w(t) haben unterschiedliche Form.


Musterlösung

Multiplikation mit Cosinus (ML zu Aufgabe A4.2)

1. a) Die Zeit $T_u$, welche die erste Nullstelle des TP-Signals $u(t)$ angibt, ist gleich dem Kehrwert der Breite des Rechteckspektrums, also 1/(2 kHz) = 0.5 ms. Die Impulsamplitude ist, wie in der Musterlösung zur Aufgabe A4.1 ausführlich dargelegt wurde, gleich der Rechteckfläche. Daraus folgt $u_0$ = 2V.

2. Das BP-Spektrum kann mit $f_T$ = 4 kHz wie folgt dargestellt werden:

$$W(f) \hspace{-0.15 cm} & = & \hspace{-0.15 cm}U(f- f_{\rm T}) + U(f+ f_{\rm T}) = \\ & = & \hspace{-0.15 cm} U(f)\star \left[ \delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].$$

Entsprechend dem Verschiebungssatz gilt dann für das dazugehörige Zeitsignal:

$$begin{align*}w(t) \hspace{-0.15 cm} & = \hspace{-0.15 cm} 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = \\ & = \hspace{-0.15 cm} 2 u_0 \cdot {\rm si} ( \pi \frac{t}{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t).end{align*}$$

Die Grafik zeigt oben das TP-Signal $u(t)$, dann die Schwingung $c(t)$ = 2 · cos(2 $\pi fTt$ ), unten das BP-Signal $w(t) = u(t) \cdot c(t)$. Insbesondere erhält man zum Zeitpunkt $t = 0$:

$$w(t = 0) = 2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$

Der Zeitpunkt $t$ = 62.5 μs entspricht genau einer viertel Periodendauer des Signals $c(t)$:

$$ w(t = 62.5 \hspace{0.05cm}{\rm \mu s}) & = & 2 u_0 \cdot{\rm si} ( \pi \frac{62.5 \hspace{0.05cm}{\rm \mu s}} {500 \hspace{0.05cm}{\rm \mu s}}) \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot 62.5 \hspace{0.05cm}{\rm \mu s}) \\ & = & 4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.$$

3. Vergleicht man die Spektralfunktion $W(f)$ dieser Aufgabe mit dem Spektrum $D(f)$ in der Musterlösung zu Aufgabe A4.1, so erkennt man, dass $w(t)$ und $d(t)$ identische Signale sind. Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit $f_2$ = 2 kHz kann für das hier betrachtete Signal geschrieben werden:

$$w(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi f_2 t) \cdot {\cos} ( 4 \pi f_2 t) = ({4\hspace{0.05cm}{\rm V}})/({\pi f_2 t})\cdot \sin (\pi f_2 t) \cdot \cos ( 4 \pi f_2 t) .$$

Wegen der trigonometrischen Beziehung

$$\sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \left[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\right]$$

kann obige Gleichung umgeformt werden:

$$w(t ) = \frac{2\hspace{0.05cm}{\rm V}}{\pi f_2 t}\cdot \left[\sin (5\pi f_2 t) + \sin (-3\pi f_2 t)\right] = 10\hspace{0.05cm}{\rm V} \cdot \frac{\sin (5\pi f_2 t)}{5\pi f_2 t}- 6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.$$

Damit ist gezeigt, dass beide Signale tatsächlich identisch sind ⇒ Lösungsvorschlag 1:

$$w(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2 t) = d(t).$$