Difference between revisions of "Gesetzmäßigkeiten der Fouriertransformation (Lernvideo)"
m (Text replacement - "_seit" to "_since") |
|||
Line 1: | Line 1: | ||
− | + | '''!!! The learning video is in German language (images and sound). There is an English summary at the end of this file !!! ''' | |
+ | |||
=== Teil 1 === | === Teil 1 === | ||
Ausgehend vom Gleichsignal $x_1(t) = A$ und der Spektralfunktion $X_1(f) = A \cdot \delta(f)$ werden durch sukzessives Anwenden der Gesetzmäßigkeiten der Fouriertransformation neue Zeitfunktionen $x_i(t)$ und zugehörige Spektren $X_i(f)$ abgeleitet. Im ersten Teil werden dabei die Anwendungen von Vertauschungssatz, Verschiebungssatz und Ähnlichkeitssatz verdeutlicht (Dauer 5:56). | Ausgehend vom Gleichsignal $x_1(t) = A$ und der Spektralfunktion $X_1(f) = A \cdot \delta(f)$ werden durch sukzessives Anwenden der Gesetzmäßigkeiten der Fouriertransformation neue Zeitfunktionen $x_i(t)$ und zugehörige Spektren $X_i(f)$ abgeleitet. Im ersten Teil werden dabei die Anwendungen von Vertauschungssatz, Verschiebungssatz und Ähnlichkeitssatz verdeutlicht (Dauer 5:56). | ||
Line 21: | Line 22: | ||
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von | Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von | ||
[[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28at_L.C3.9CT_since_2014.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können. | [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28at_L.C3.9CT_since_2014.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können. | ||
+ | |||
+ | |||
+ | <hr style="border-color: #000000; border-width: 15px;"> | ||
+ | '''English summary:''' | ||
+ | |||
+ | |||
+ | |||
+ | =Regularities to the Fourier transform= | ||
+ | |||
+ | === Part 1 === | ||
+ | Starting from the DC signal $x_1(t) = A$ and the spectral function $X_1(f) = A \cdot \delta(f)$ new time functions $x_i(t)$ and corresponding spectra $X_i(f)$ are derived by successively applying the laws of the Fourier transform. In the first part, the applications of the permutation theorem, displacement theorem and similarity theorem are clarified (Duration 5:56). | ||
+ | |||
+ | <lntmedia preload="none"> | ||
+ | file:Gesetzmaessigkeiten_der_Fouriertransformation_1.mp4 | ||
+ | file:Gesetzmaessigkeiten_der_Fouriertransformation_1.ogv | ||
+ | </lntmedia> | ||
+ | |||
+ | === Part 2 === | ||
+ | In the second part the successive application of the laws of the Fourier transform is continued. Here the linear combination of signals is considered, for example the difference $x_5(t) = x_3(t)-x_4(t)$. This is followed by the integration theorem, the differentiation theorem, and the assignment theorem. The final result $X_7(f)$ is identical to the spectral function calculated at the beginning of Part 1 with the first Fourier integral (duration 5:54). | ||
+ | |||
+ | <lntmedia preload="none"> | ||
+ | file:Gesetzmaessigkeiten_der_Fouriertransformation_2.mp4 | ||
+ | file:Gesetzmaessigkeiten_der_Fouriertransformation_2.ogv | ||
+ | </lntmedia> | ||
+ | |||
+ | This educational video was conceived and realized in 2004 at the [http://www.lnt.ei.tum.de/startseite "Chair of Communications Engineering"] of the [https://www.tum.de/ "Technical University of Munich"]. | ||
+ | |||
+ | |||
+ | __NOTOC__ | ||
+ | __NOEDITSECTION__ |
Revision as of 19:41, 14 March 2023
!!! The learning video is in German language (images and sound). There is an English summary at the end of this file !!!
Teil 1
Ausgehend vom Gleichsignal $x_1(t) = A$ und der Spektralfunktion $X_1(f) = A \cdot \delta(f)$ werden durch sukzessives Anwenden der Gesetzmäßigkeiten der Fouriertransformation neue Zeitfunktionen $x_i(t)$ und zugehörige Spektren $X_i(f)$ abgeleitet. Im ersten Teil werden dabei die Anwendungen von Vertauschungssatz, Verschiebungssatz und Ähnlichkeitssatz verdeutlicht (Dauer 5:56).
Teil 2
Im zweiten Teil wird das sukzessive Anwenden der Gesetzmäßigkeiten der Fouriertransformation fortgesetzt. Betrachtet wird hier die Linearkombination von Signalen, zum Beispiel die Differenz $x_5(t) = x_3(t)-x_4(t)$. Anschließend folgt der Integrationssatz, der Differentiationssatz sowie der Zuordnungssatz. Das Endergebnis $X_7(f)$ ist identisch mit der Spektralfunktion, die zu Beginn von Teil 1 mit dem ersten Fourierintegral berechnet wurde (Dauer 5:54).
Dieses Lernvideo wurde 2006 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Günter Söder und Klaus Eichin, Sprecher: Günter Söder, Realisierung: Franz Kohl und Manfred Jürgens.
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von Tasnád Kernetzky und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können.
English summary:
Regularities to the Fourier transform
Part 1
Starting from the DC signal $x_1(t) = A$ and the spectral function $X_1(f) = A \cdot \delta(f)$ new time functions $x_i(t)$ and corresponding spectra $X_i(f)$ are derived by successively applying the laws of the Fourier transform. In the first part, the applications of the permutation theorem, displacement theorem and similarity theorem are clarified (Duration 5:56).
Part 2
In the second part the successive application of the laws of the Fourier transform is continued. Here the linear combination of signals is considered, for example the difference $x_5(t) = x_3(t)-x_4(t)$. This is followed by the integration theorem, the differentiation theorem, and the assignment theorem. The final result $X_7(f)$ is identical to the spectral function calculated at the beginning of Part 1 with the first Fourier integral (duration 5:54).
This educational video was conceived and realized in 2004 at the "Chair of Communications Engineering" of the "Technical University of Munich".