Difference between revisions of "Aufgaben:Exercise 5.7: OFDM Transmitter using IDFT"

From LNTwww
Line 37: Line 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die maximale Datenbitrate des Systems an.
+
{Specify the maximum data bit rate of the system.
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm B} \ = \ $ { 64 3% } $\ \rm kbit/s$
 
$R_{\rm B} \ = \ $ { 64 3% } $\ \rm kbit/s$
  
{Geben Sie für die gegebene 16–QAM–Signalraumzuordnung die komplexen Trägerkoeffizienten &nbsp;$D_\mu$&nbsp; für die folgenden Eingangsbitfolgen an.
+
{For the given 16-QAM signal space allocation, specify the complex carrier coefficients &nbsp;$D_\mu$&nbsp; for the following input bit sequences.
 
|type="{}"}
 
|type="{}"}
${\rm Re}\big [D_0 \big ] \ = \ $ { -1.03--0.97 }  $\ \ \text{für die Bitfolge 1111}$   
+
${\rm Re}\big [D_0 \big ] \ = \ $ { -1.03--0.97 }  $\ \ \text{for the bit sequence 1111}$   
 
${\rm Im}\big [D_0\big ] \ = \ $ { -1.03--0.97 }  
 
${\rm Im}\big [D_0\big ] \ = \ $ { -1.03--0.97 }  
${\rm Re}\big [D_1\big ] \ = \ $ { -1.03--0.97 }  $\ \ \text{für die Bitfolge 0111}$
+
${\rm Re}\big [D_1\big ] \ = \ $ { -1.03--0.97 }  $\ \ \text{for the bit sequence 0111}$
 
${\rm Im}\big [D_1\big ] \ = \ $ { 1 }  
 
${\rm Im}\big [D_1\big ] \ = \ $ { 1 }  
${\rm Re}\big [D_2\big ] \ = \ $ { 3 3% } $\ \ \text{für die Bitfolge 1000}$   
+
${\rm Re}\big [D_2\big ] \ = \ $ { 3 3% } $\ \ \text{for the bit sequence 1000}$   
 
${\rm Im}\big [D_2\big ] \ = \ $ { -3.09--2.91 }  
 
${\rm Im}\big [D_2\big ] \ = \ $ { -3.09--2.91 }  
${\rm Re}\big [D_3\big ] \ = \ $ { 3 3% } $\ \ \text{für die Bitfolge 0000}$
+
${\rm Re}\big [D_3\big ] \ = \ $ { 3 3% } $\ \ \text{for the bit sequence 0000}$
 
${\rm Im}\big [D_3\big ] \ = \ $ { 3 3% }  
 
${\rm Im}\big [D_3\big ] \ = \ $ { 3 3% }  
  
{Berechnen Sie daraus die diskreten Zeitbereichswerte &nbsp;$d_\nu$&nbsp; innerhalb des Rahmens.
+
{From this, calculate the discrete time domain values &nbsp;$d_\nu$&nbsp; within the frame.
 
|type="{}"}
 
|type="{}"}
 
${\rm Re}\big [d_0\big ] \ = \ $ { 4 1% }
 
${\rm Re}\big [d_0\big ] \ = \ $ { 4 1% }
Line 63: Line 63:
 
${\rm Im}\big [d_3\big ] \ = \ $ { 6 1% }
 
${\rm Im}\big [d_3\big ] \ = \ $ { 6 1% }
  
{Welche Aussagen sind für den Crest–Faktor zutreffend, der das Verhältnis von Spitzenwert zu Effektivwert einer Wechselgröße bezeichnet?
+
{Which statements are true for the crest factor, which denotes the ratio of the peak value to the rms value of an alternating quantity?
 
|type="[]"}
 
|type="[]"}
- Der Crest–Faktor ist bei einem OFDM–System eher gering.
+
- The crest factor is rather low for an OFDM system.
+ Der Crest–Faktor kann bei OFDM–Systemen sehr groß werden.
+
+ The crest factor can become very large in OFDM systems.
+ Ein großer Crest–Faktor kann zu Realisierungsproblemen führen.
+
+ A large crest factor can lead to implementation problems.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Da hier kein Guard–Intervall berücksichtigt wird, ist die Symboldauer&nbsp; $T$&nbsp; gleich der Rahmendauer&nbsp; $T_{\rm{R}} = 0.25 \ \rm ms$.  
+
'''(1)'''&nbsp;  Since no guard interval is considered here, the symbol duration&nbsp; $T$&nbsp; is equal to the frame duration&nbsp; $T_{\rm{R}} = 0.25 \ \rm ms$.  
*Bei&nbsp; $N = 4$&nbsp; Trägern und&nbsp; $\rm 16–QAM$&nbsp; gilt für die Bitrate am Eingang:
+
*For&nbsp; $N = 4$&nbsp; carriers and&nbsp; $\rm 16–QAM$,&nbsp; the bit rate at the input is:
 
:$$R_{\rm{B}} = \frac{1}{T_{\rm{B}}} = \frac{4 \cdot {\rm{log}_2}\hspace{0.08cm}(16)}{T} = \frac{4 \cdot 4}{0.25\,\,{\rm ms}}\hspace{0.15cm}\underline {= 64\,\,{\rm kbit/s}}.$$
 
:$$R_{\rm{B}} = \frac{1}{T_{\rm{B}}} = \frac{4 \cdot {\rm{log}_2}\hspace{0.08cm}(16)}{T} = \frac{4 \cdot 4}{0.25\,\,{\rm ms}}\hspace{0.15cm}\underline {= 64\,\,{\rm kbit/s}}.$$
  
  
'''(2)'''&nbsp;  Aus der Signalraumzuordnung folgt für die Trägerkoeffizienten&nbsp; $($auf den Index&nbsp; $k$&nbsp; wird verzichtet$)$:
+
'''(2)'''&nbsp;  From the signal space allocation, it follows for the carrier coefficients&nbsp; $($the index&nbsp; $k$&nbsp; is omitted$)$:
:$${\rm{Bitfolge}}\hspace{0.2cm}1111:\hspace{0.5cm} D_0  =  -1 - {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_0]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_0]\hspace{0.15cm}\underline{=-1},$$  
+
:$${\rm{Bit \quad sequence}}\hspace{0.2cm}1111:\hspace{0.5cm} D_0  =  -1 - {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_0]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_0]\hspace{0.15cm}\underline{=-1},$$  
:$${\rm{Bitfolge}}\hspace{0.2cm}0111:\hspace{0.5cm} D_1  =  -1 + {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_1]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_1]\hspace{0.15cm}\underline{=+1},$$  
+
:$${\rm{Bit \quad sequence}}\hspace{0.2cm}0111:\hspace{0.5cm} D_1  =  -1 + {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_1]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_1]\hspace{0.15cm}\underline{=+1},$$  
:$${\rm{Bitfolge}}\hspace{0.2cm}1000:\hspace{0.5cm} D_2  =  +3 - 3{\rm{j}},\hspace{0.15cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_2]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_2]\hspace{0.15cm}\underline{=-3},$$  
+
:$${\rm{Bit \quad sequence}}\hspace{0.2cm}1000:\hspace{0.5cm} D_2  =  +3 - 3{\rm{j}},\hspace{0.15cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_2]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_2]\hspace{0.15cm}\underline{=-3},$$  
:$${\rm{Bitfolge}}\hspace{0.2cm}0000:\hspace{0.5cm} D_3  =  +3 + 3{\rm{j}}\hspace{0.2cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_3]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_3]\hspace{0.15cm}\underline{=+3}.$$  
+
:$${\rm{Bit \quad sequence}}\hspace{0.2cm}0000:\hspace{0.5cm} D_3  =  +3 + 3{\rm{j}}\hspace{0.2cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_3]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_3]\hspace{0.15cm}\underline{=+3}.$$  
  
  
'''(3)'''&nbsp;  Die angegebene IDFT–Gleichung lautet mit&nbsp; $N = 4$:
+
'''(3)'''&nbsp;  The given IDFT equation is with&nbsp; $N = 4$:
 
:$$d_{\nu } = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu } \cdot {\rm{e}}^{ \hspace{0.04cm} {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} \pi/2 \hspace{0.04cm}\cdot \hspace{0.04cm}\nu \hspace{0.04cm}\cdot \hspace{0.04cm} \mu } } .$$
 
:$$d_{\nu } = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu } \cdot {\rm{e}}^{ \hspace{0.04cm} {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} \pi/2 \hspace{0.04cm}\cdot \hspace{0.04cm}\nu \hspace{0.04cm}\cdot \hspace{0.04cm} \mu } } .$$
*Daraus erhält man für&nbsp; $ν = 0$, ... , $3$:
+
*From this we obtain for&nbsp; $ν = 0$, ... , $3$:
 
:$$d_0  =  D_0 + D_1 +D_2 +D_3 = 4 \hspace{2.9cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_0]\hspace{0.15cm}\underline{=4},\hspace{0.2cm}{\rm Im}[d_0]\hspace{0.15cm}\underline{=0},$$  
 
:$$d_0  =  D_0 + D_1 +D_2 +D_3 = 4 \hspace{2.9cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_0]\hspace{0.15cm}\underline{=4},\hspace{0.2cm}{\rm Im}[d_0]\hspace{0.15cm}\underline{=0},$$  
 
:$$d_1  =  D_0 + {\rm{j}} \cdot D_1 - D_2 -{\rm{j}} \cdot D_3 = -2 + 2 \cdot {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_1]\hspace{0.15cm}\underline{=-2},\hspace{0.2cm}{\rm Im}[d_1]\hspace{0.15cm}\underline{=+2},$$  
 
:$$d_1  =  D_0 + {\rm{j}} \cdot D_1 - D_2 -{\rm{j}} \cdot D_3 = -2 + 2 \cdot {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_1]\hspace{0.15cm}\underline{=-2},\hspace{0.2cm}{\rm Im}[d_1]\hspace{0.15cm}\underline{=+2},$$  
Line 94: Line 94:
  
  
'''(4)'''&nbsp;  Richtig sind die <u>beiden letzten Lösungsvorschläge</u>:
+
'''(4)'''&nbsp;  The <u>last two solutions</u> are correct:
* Bei OFDM ist der Crest–Faktor eher groß.  
+
* For OFDM, the crest factor is rather large.
*Dies kann bei den verwendeten Verstärkerschaltungen zu Problemen in Bezug auf Linearitätsanforderungen und Energieeffizienz führen.
+
*This can lead to problems in terms of linearity requirements and energy efficiency for the amplifier circuits used.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 09:58, 29 December 2021

Block diagram of the IDFT

In this exercise, we take a closer look at an OFDM transmitter implemented using the  Inverse Discrete Fourier Transform  $\rm (IDFT)$.    Thereby it is valid:

  • The system has  $N = 4$  carriers.
  • The frame duration is  $T_{\ \rm R} = 0.25 \ \rm ms$.
  • A guard interval is not used.
  • In each frame  $16$  bits are transmitted.
  • The upper right diagram shows the block "IDFT" of the OFDM transmitter structure.
  • Here, four bits each result in a complex symbol according to the  $\rm16–QAM$ signal space allocation sketched below left.


Suggested 16–QAM signal space allocation







Notes:

  • The equation of the IDFT is with  $ν = 0$, ... , $N–1$:
$$\quad d_{\nu ,k} = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu ,k} \cdot w^{ - \nu \cdot \mu } } \quad {\rm{mit}} \quad w = {\rm{e}}^{ - {\rm{j}} {\rm{2\pi}}/N}.$$


Questions

1

Specify the maximum data bit rate of the system.

$R_{\rm B} \ = \ $

$\ \rm kbit/s$

2

For the given 16-QAM signal space allocation, specify the complex carrier coefficients  $D_\mu$  for the following input bit sequences.

${\rm Re}\big [D_0 \big ] \ = \ $

$\ \ \text{for the bit sequence 1111}$
${\rm Im}\big [D_0\big ] \ = \ $

${\rm Re}\big [D_1\big ] \ = \ $

$\ \ \text{for the bit sequence 0111}$
${\rm Im}\big [D_1\big ] \ = \ $

${\rm Re}\big [D_2\big ] \ = \ $

$\ \ \text{for the bit sequence 1000}$
${\rm Im}\big [D_2\big ] \ = \ $

${\rm Re}\big [D_3\big ] \ = \ $

$\ \ \text{for the bit sequence 0000}$
${\rm Im}\big [D_3\big ] \ = \ $

3

From this, calculate the discrete time domain values  $d_\nu$  within the frame.

${\rm Re}\big [d_0\big ] \ = \ $

${\rm Im}\big [d_0\big ] \ = \ $

${\rm Re}\big [d_1\big ] \ = \ $

${\rm Im}\big [d_1\big ] \ = \ $

${\rm Re}\big [d_2\big ] \ = \ $

${\rm Im}\big [d_2\big ] \ = \ $

${\rm Re}\big [d_3\big ] \ = \ $

${\rm Im}\big [d_3\big ] \ = \ $

4

Which statements are true for the crest factor, which denotes the ratio of the peak value to the rms value of an alternating quantity?

The crest factor is rather low for an OFDM system.
The crest factor can become very large in OFDM systems.
A large crest factor can lead to implementation problems.


Solution

(1)  Since no guard interval is considered here, the symbol duration  $T$  is equal to the frame duration  $T_{\rm{R}} = 0.25 \ \rm ms$.

  • For  $N = 4$  carriers and  $\rm 16–QAM$,  the bit rate at the input is:
$$R_{\rm{B}} = \frac{1}{T_{\rm{B}}} = \frac{4 \cdot {\rm{log}_2}\hspace{0.08cm}(16)}{T} = \frac{4 \cdot 4}{0.25\,\,{\rm ms}}\hspace{0.15cm}\underline {= 64\,\,{\rm kbit/s}}.$$


(2)  From the signal space allocation, it follows for the carrier coefficients  $($the index  $k$  is omitted$)$:

$${\rm{Bit \quad sequence}}\hspace{0.2cm}1111:\hspace{0.5cm} D_0 = -1 - {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_0]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_0]\hspace{0.15cm}\underline{=-1},$$
$${\rm{Bit \quad sequence}}\hspace{0.2cm}0111:\hspace{0.5cm} D_1 = -1 + {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_1]\hspace{0.15cm}\underline{=-1},\hspace{0.2cm}{\rm Im}[D_1]\hspace{0.15cm}\underline{=+1},$$
$${\rm{Bit \quad sequence}}\hspace{0.2cm}1000:\hspace{0.5cm} D_2 = +3 - 3{\rm{j}},\hspace{0.15cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_2]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_2]\hspace{0.15cm}\underline{=-3},$$
$${\rm{Bit \quad sequence}}\hspace{0.2cm}0000:\hspace{0.5cm} D_3 = +3 + 3{\rm{j}}\hspace{0.2cm}\Rightarrow\hspace{0.3cm}{\rm Re}[D_3]\hspace{0.15cm}\underline{=+3},\hspace{0.2cm}{\rm Im}[D_3]\hspace{0.15cm}\underline{=+3}.$$


(3)  The given IDFT equation is with  $N = 4$:

$$d_{\nu } = \sum\limits_{\mu = 0}^{N - 1} {D_{\mu } \cdot {\rm{e}}^{ \hspace{0.04cm} {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} \pi/2 \hspace{0.04cm}\cdot \hspace{0.04cm}\nu \hspace{0.04cm}\cdot \hspace{0.04cm} \mu } } .$$
  • From this we obtain for  $ν = 0$, ... , $3$:
$$d_0 = D_0 + D_1 +D_2 +D_3 = 4 \hspace{2.9cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_0]\hspace{0.15cm}\underline{=4},\hspace{0.2cm}{\rm Im}[d_0]\hspace{0.15cm}\underline{=0},$$
$$d_1 = D_0 + {\rm{j}} \cdot D_1 - D_2 -{\rm{j}} \cdot D_3 = -2 + 2 \cdot {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_1]\hspace{0.15cm}\underline{=-2},\hspace{0.2cm}{\rm Im}[d_1]\hspace{0.15cm}\underline{=+2},$$
$$d_2 = D_0 - D_1 + D_2 - D_3 = -8 \cdot {\rm{j}}\hspace{2.1cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_2]\hspace{0.15cm}\underline{=0},\hspace{0.2cm}{\rm Im}[d_2]\hspace{0.15cm}\underline{=-8},$$
$$d_3 = D_0 - {\rm{j}} \cdot D_1 - D_2 +{\rm{j}} \cdot D_3 = -6 + 6 \cdot {\rm{j}}\hspace{0.4cm}\Rightarrow\hspace{0.4cm}{\rm Re}[d_3]\hspace{0.15cm}\underline{=-6},\hspace{0.2cm}{\rm Im}[d_3]\hspace{0.15cm}\underline{=+6}.$$


(4)  The last two solutions are correct:

  • For OFDM, the crest factor is rather large.
  • This can lead to problems in terms of linearity requirements and energy efficiency for the amplifier circuits used.