Difference between revisions of "Aufgaben:Exercise 3.3Z: Moments for Triangular PDF"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID142__Sto_Z_3_3.png|right|frame|Two triangular PDF]]
+
[[File:P_ID142__Sto_Z_3_3.png|right|frame|Two triangular PDFs]]
We consider in this task two random signals  $x(t)$  and  $y(t)$  each with triangular PDF, namely
+
We consider in this exercise two random signals  $x(t)$  and  $y(t)$  each with triangular PDF,  namely
  
 
* the one-sided triangular PDF according to the upper graph:
 
* the one-sided triangular PDF according to the upper graph:
:$$f_x(x)=\left\{ \begin{array}{*{4}{c}} 0.5 \cdot (1-{ x}/{\rm 4}) & \rm f\ddot{u}r\hspace{0.2cm}{\rm 0 \le {\it x} \le 4},\rm 0 & \rm else. \end{array} \right.$$
+
:$$f_x(x)=\left\{ \begin{array}{*{4}{c}} 0.5 \cdot (1-{ x}/{\rm 4}) & \rm for\hspace{0.2cm}{\rm 0 \le {\it x} \le 4},\\\rm 0 & \rm else. \end{array} \right.$$
  
 
* the two-sided triangular PDF according to the graph below:
 
* the two-sided triangular PDF according to the graph below:
:$$ f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (1-{ |y|}/{\rm 4}) & \rm f\ddot{u}r\hspace{0.2cm}{ -4 \le {\it y}  \le \rm 4},\rm 0 & \rm else. \end{array} \right.$$
+
:$$ f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (1-{ |y|}/{\rm 4}) & \rm for\hspace{0.2cm}{ -4 \le {\it y}  \le \rm 4},\\\rm 0 & \rm else. \end{array} \right.$$
  
To solve this problem, consider the equation for the central moments:
+
To solve this problem,  consider the equation for the central moments:
 
:$$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$
 
:$$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$
  
Specifically, this equation yields the following results:
+
Specifically,  this equation yields the following results:
 
:$$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1} {\rm +}\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$
 
:$$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1} {\rm +}\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$
 
:$$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}\rm +6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$
 
:$$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}\rm +6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$
  
From the central moments of higher order one can derive, among others:
+
From the central moments of higher order one can derive among others:
 
 
*the&nbsp; "Charlier's skewness</i>"&nbsp; $S =  {\mu_3}/{\sigma^3}\hspace{0.05cm},$
 
 
 
*the&nbsp; "Kurtosis</i>"&nbsp; $K =  {\mu_4}/{\sigma^4}\hspace{0.05cm}.$
 
 
 
  
 +
*the&nbsp; "Charlier's skewness"&nbsp; $S =  {\mu_3}/{\sigma^3}\hspace{0.05cm},$
  
 +
*the&nbsp; "kurtosis"&nbsp; $K =  {\mu_4}/{\sigma^4}\hspace{0.05cm}.$
  
  
Line 32: Line 29:
  
 
Hints:  
 
Hints:  
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Erwartungswerte_und_Momente|Erwartungswerte und Momente]].
+
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]].
*Reference is made to the page&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|Some common central moments]].
+
*Reference is made to the section&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|Some common central moments]].
 
   
 
   
  
Line 41: Line 38:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate from the present PDF&nbsp; $f_x(x)$&nbsp; the moment&nbsp; $k$-th order. <br>What value results for the linear mean&nbsp; $m_x = m_1$?
+
{Calculate from the present PDF&nbsp; $f_x(x)$&nbsp; the&nbsp; $k$-th order moment.&nbsp; What value results for the linear mean&nbsp; $m_x = m_1$?
 
|type="{}"}
 
|type="{}"}
 
$m_x \ = \ $ { 1.333 3% }
 
$m_x \ = \ $ { 1.333 3% }
Line 51: Line 48:
  
  
{For random variable&nbsp; $x$&nbsp; how large is Charlier's skewness&nbsp; $S_x = \mu_3/\sigma_x^3$? &nbsp; Why is&nbsp; $S_x \ne 0$?
+
{For random variable&nbsp; $x$:&nbsp; What is the Charlier's skewness&nbsp; $S_x = \mu_3/\sigma_x^3$?&nbsp; Why is&nbsp; $S_x \ne 0$?
 
|type="{}"}
 
|type="{}"}
 
$S_x \ = \ $ { 0.566 3% }
 
$S_x \ = \ $ { 0.566 3% }
  
  
{Which statements are true for the symmetrically distributed random variable&nbsp; $y$&nbsp;?
+
{Which statements are true for the symmetrically distributed random variable&nbsp; $y$?
 
|type="[]"}
 
|type="[]"}
 
+ All moments with odd&nbsp; $k$&nbsp; are&nbsp; $m_k =0$.
 
+ All moments with odd&nbsp; $k$&nbsp; are&nbsp; $m_k =0$.
 
- All moments with even&nbsp; $k$&nbsp; are&nbsp; $m_k =0$.
 
- All moments with even&nbsp; $k$&nbsp; are&nbsp; $m_k =0$.
+ All moments&nbsp; $m_k$&nbsp; with even&nbsp; $k$&nbsp; are calculated as in subtask&nbsp; '''(1)'''&nbsp;.
+
+ All moments&nbsp; $m_k$&nbsp; with even&nbsp; $k$&nbsp; are calculated as in subtask&nbsp; '''(1)'''.
 
+ The central moments &nbsp; $\mu_k$&nbsp; are equal to the non-centered moments&nbsp; $m_k$.
 
+ The central moments &nbsp; $\mu_k$&nbsp; are equal to the non-centered moments&nbsp; $m_k$.
  
Line 69: Line 66:
  
  
{What value is obtained for the kurtosis&nbsp; $K_y$&nbsp; of the random variable&nbsp; $y$? &nbsp; Interpret the result.
+
{What is the kurtosis&nbsp; $K_y$&nbsp; of the random variable&nbsp; $y$?&nbsp; Interpret the result.
 
|type="{}"}
 
|type="{}"}
 
$K_y \ = \ $ { 2.4 3% }
 
$K_y \ = \ $ { 2.4 3% }

Revision as of 15:13, 5 January 2022

Two triangular PDFs

We consider in this exercise two random signals  $x(t)$  and  $y(t)$  each with triangular PDF,  namely

  • the one-sided triangular PDF according to the upper graph:
$$f_x(x)=\left\{ \begin{array}{*{4}{c}} 0.5 \cdot (1-{ x}/{\rm 4}) & \rm for\hspace{0.2cm}{\rm 0 \le {\it x} \le 4},\\\rm 0 & \rm else. \end{array} \right.$$
  • the two-sided triangular PDF according to the graph below:
$$ f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (1-{ |y|}/{\rm 4}) & \rm for\hspace{0.2cm}{ -4 \le {\it y} \le \rm 4},\\\rm 0 & \rm else. \end{array} \right.$$

To solve this problem,  consider the equation for the central moments:

$$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$

Specifically,  this equation yields the following results:

$$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1} {\rm +}\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$
$$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}\rm +6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$

From the central moments of higher order one can derive among others:

  • the  "Charlier's skewness"  $S = {\mu_3}/{\sigma^3}\hspace{0.05cm},$
  • the  "kurtosis"  $K = {\mu_4}/{\sigma^4}\hspace{0.05cm}.$



Hints:



Questions

1

Calculate from the present PDF  $f_x(x)$  the  $k$-th order moment.  What value results for the linear mean  $m_x = m_1$?

$m_x \ = \ $

2

What is the quadratic mean and the rms  $\sigma_x$  of the random variable  $x$?

$\sigma_x\ = \ $

3

For random variable  $x$:  What is the Charlier's skewness  $S_x = \mu_3/\sigma_x^3$?  Why is  $S_x \ne 0$?

$S_x \ = \ $

4

Which statements are true for the symmetrically distributed random variable  $y$?

All moments with odd  $k$  are  $m_k =0$.
All moments with even  $k$  are  $m_k =0$.
All moments  $m_k$  with even  $k$  are calculated as in subtask  (1).
The central moments   $\mu_k$  are equal to the non-centered moments  $m_k$.

5

Calculate the rms of the random variable  $y$.

$\sigma_y \ = \ $

6

What is the kurtosis  $K_y$  of the random variable  $y$?  Interpret the result.

$K_y \ = \ $


Solution

(1)  For the  $k$–th order moment of the random variable  $x$  holds:

$$m_k=1/2\cdot \int_{\rm 0}^{\rm 4} x^k\cdot ( 1-\frac{\it x}{\rm 4}) \hspace{0.1cm}{\rm d}x.$$
  • This leads to the result:
$$m_k=\frac{x^{ k+ 1}}{ 2\cdot ( k+ 1)}\Bigg|_{\rm 0}^{\rm 4}-\frac{x^{ k+2}}{8\cdot ( k+2)}\Bigg|_{\rm 0}^{\rm 4}=\frac{\rm 2\cdot \rm 4^{\it k}}{(\it k\rm +1)\cdot (\it k\rm + 2)}.$$
  • From this we obtain for the linear mean  $(k= 1)$:
$$m_x=\rm {4}/{3}\hspace{0.15cm}\underline{=1.333}.$$


(2)  The   $(k= 2)$  is  $m_2 = 8/3$.

  • From this follows with Steiner's theorem:
$$\sigma_x^{\rm 2}={8}/{3}-({4}/{3})^2=\rm {8}/{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm} \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$


(3)  With  $m_1 = 4/3$,  $m_2 = 8/3$  and  $m_3 = 32/5$ , the given equation for the third order central moment gives:   $\mu_3 = 64/135 \approx 0.474$.

  • From this follows for  Charlier's skewness:
$$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$
  • Due to the asymmetric PDF, $S_x \ne 0$.


(4)  Correct are the proposed solutions 1, 3 and 4:

  • For symmetric PDF, all odd moments are zero, including the mean  $m_y$.
  • Therefore, in terms of randomness  $y$  there is no difference between the moments  $m_k$  and the central moments  $\mu_k$.
  • The moments  $m_k$  with even  $k$  are the same for the random variables  $x$  and  $y$  . This is evident from the time averages.
  • Since  $x^2(t) = y^2(t)$, for  $k = 2n$  the moments are also equal:
$$m_k=m_{2 n}=\ \text{...}\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=\ \text{...}\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$


(5)  With the result of the subtask  (2)  holds:

$$m_2=\mu_{\rm 2}=\sigma_y^2=\rm {8}/{3} = 2.667\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_y\hspace{0.15cm}\underline{=1.633}.$$


(6)  The fourth-order central moment is equal to the moment  $m_4$ for symmetric WDF.

  • From the general equation calculated in subtask  (1)  one obtains  $\mu_4 = 256/15.$
  • From this follows for the kurtosis:
$$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$
Note:   This numerical value is valid for the triangle WDF in general and lies between the kurtosis values of uniform distribution  $(K = 1.8)$  and Gaussian distribution  $(K = 3)$. This is a quantitative evaluation of the fact that here
  • the outliers are more pronounced than in the case of a uniformly distributed random size,
  • but due to the limitation less pronounced than with Gaussian sizes.

Then we will prove that the asymmetric triangular WDF $f_x(x)$ also has the same kurtosis as shown in the upper sketch on the data sheet:

$$\mu_{ 4} = m_{\rm 4}- 4\cdot m_{\rm 3}\cdot m_{\rm 1}+ 6\cdot m_{\rm 2}\cdot m_{\rm 1}^{\rm 2}- 3\cdot m_{\rm 1}^{\rm 4}= \frac{256}{15} - 4 \cdot \frac{32}{5}\cdot \frac{4}{3} + 6 \cdot \frac{8}{3}\cdot \left(\frac{4}{3}\right)^2 -3 \cdot \left(\frac{4}{3}\right)^4 =\frac{256}{15 \cdot 9}$$
  • With the result of the subtask  (3)    ⇒   $\sigma_x^2 = 8/9$  it follows:
$$ K_x = \frac{{256}/(15 \cdot 9)}{8/9 \cdot 8/9} = 2.4.$$