Difference between revisions of "Aufgaben:Exercise 2.7: C Programs "z1" and "z2""

From LNTwww
 
Line 53: Line 53:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  After the first iteration of the loop  $(m = 0)$  the variable  $\text{sum = 0.2}$, at the next iteration  $(m = 1)$  holds  $\text{sum = 0.2 + 0.3 = 0.5}$.  
+
'''(1)'''  After the first iteration of the loop  $(m = 0)$  the variable  $\text{sum = 0.2}$,  at the next iteration  $(m = 1)$  holds  $\text{sum = 0.2 + 0.3 = 0.5}$.  
*In both cases, therefore, the variable&nbsp; $\text{sum} < x = 0.75$.&nbsp;  
+
*In both cases:&nbsp; $\text{sum}$&nbsp; is less than&nbsp; $x = 0.75$.&nbsp;  
*Only when&nbsp; $m = 2$&nbsp; is the return '''(bin hier nicht sicher)''' condition satisfied: &nbsp; $0.9 > x$.&nbsp; Thus&nbsp; $\underline{z1 = 2}$.
+
*Only at&nbsp; $m = 2$&nbsp; the return condition is satisfied: &nbsp; $0.9 > x$.&nbsp; Thus&nbsp; $\underline{z1 = 2}$.
  
  
  
'''(2)'''&nbsp; The correct solutions are <u>solutions 2 and 3</u>:
+
'''(2)'''&nbsp; Correct are the&nbsp; <u>solutions 2 and 3</u>:
*Were we to dispense with the auxiliary variable&nbsp; $x$&nbsp; and write in line 8 instead&nbsp; $\text{sum > random()}$&nbsp; a new random value would be generated on each iteration of the loop, and&nbsp; $z1$&nbsp; would then not have the desired properties.
+
*If one were to dispense with the auxiliary variable&nbsp; $x$&nbsp; and write in line 8 instead&nbsp; "$\text{sum > random()}$"&nbsp; a new random value would be generated on each iteration of the loop,&nbsp; and&nbsp; $z1$&nbsp; would then not have the desired properties.
*$z1$&nbsp; works according to the diagram on the page "Generation of multistage random variables" in the theory section.&nbsp; There you find a much faster implementation for the case of equal probabilities&nbsp; $(1/M)$.
+
*$z1$&nbsp; works according to the diagram on the page "Generation of multilevel random variables" in the theory section.&nbsp; There you find a faster implementation for the case of equal probabilities&nbsp; $(1/M)$.
*In the first run&nbsp; $(m = 0)$&nbsp; in this case the return condition is not satisfied due to the less/equal&ndash;query;&nbsp; the output value is actually&nbsp; $z1 = 1$.
+
*In this case:&nbsp; In the first run&nbsp; $(m = 0)$&nbsp; the return condition is not satisfied due to the&nbsp; "Lesser/Equal"&nbsp; query;&nbsp; the output value is actually&nbsp; $z1 = 1$.
  
  
  
'''(3)'''&nbsp; The correct <u>solutions are 1, 3, and 4</u>:
+
'''(3)'''&nbsp; Correct are the&nbsp; <u>solutions 1,&nbsp; 3,&nbsp; and&nbsp; 4</u>:
*It results in a binomially distributed random variable, with the set of values&nbsp; $\{0, 1, 2, 3, 4\}$.  
+
*It results in a binomially distributed random variable,&nbsp; with&nbsp; $z2 \in \{0, 1, 2, 3, 4\}$.  
*For the calculation of the probability ${\rm Pr}(z2 = 0) = (1 -p)^{I}$&nbsp; one needs the mathematical library.  
+
*For the calculation of the probability&nbsp; ${\rm Pr}(z2 = 0) = (1 -p)^{I}$&nbsp; one needs the mathematical library.  
*But exponentiation could also be realized by&nbsp; $I$&ndash;fold multiplication.  
+
*But exponentiation could also be realized by by multiplying &nbsp; $I$&nbsp; times.  
  
  
  
'''(4)'''&nbsp; Because of line 6, the field element&nbsp; $\text{p_array[0]}$&nbsp; before the program loop&nbsp; $(i = 0)$&nbsp; contains the value&nbsp; $(1 -p)^{I}$.&nbsp;  
+
'''(4)'''&nbsp; Because of line 6,&nbsp; before the program loop&nbsp; $(i = 0)$&nbsp;the field element&nbsp; $\text{p_array[0]}=(1 -p)^{I}$.&nbsp;  
 
*In the first iteration&nbsp; $(i = 1)$&nbsp; the following value is entered:
 
*In the first iteration&nbsp; $(i = 1)$&nbsp; the following value is entered:
 
:$$\text{p_array[1]}=\frac{ p\cdot I}{ 1- p}\cdot\text{p_array[0]}= I\cdot p\cdot(1- p)^{ I- 1}={\rm Pr}(z2= 1) .$$
 
:$$\text{p_array[1]}=\frac{ p\cdot I}{ 1- p}\cdot\text{p_array[0]}= I\cdot p\cdot(1- p)^{ I- 1}={\rm Pr}(z2= 1) .$$
  
*In the second iteration&nbsp; $(i = 2)$&nbsp; the probability for the result "$z2=2$" is calculated:
+
*In the second iteration&nbsp; $(i = 2)$&nbsp; the probability for the result&nbsp; "$z2=2$"&nbsp; is calculated:
 
:$$\text{p_array[2]}=\frac{p\cdot (I- 1)}{ 2\cdot ( 1- p)}\cdot\text{p_array[1]}= \left({ I \atop { 2}}\right)\cdot p^{\rm 2}\cdot( 1- p)^{\rm 2}={\rm Pr}( z2 = 2) .$$
 
:$$\text{p_array[2]}=\frac{p\cdot (I- 1)}{ 2\cdot ( 1- p)}\cdot\text{p_array[1]}= \left({ I \atop { 2}}\right)\cdot p^{\rm 2}\cdot( 1- p)^{\rm 2}={\rm Pr}( z2 = 2) .$$
  

Latest revision as of 14:33, 29 December 2021

C programs for generating
discrete random variables

The two C programs given here are suitable for generating discrete random variables:

  • The function  $z1$  generates an  $M$–level random variable with the value set  $\{0, 1$, ... , $M-1\}$.  The associated probabilities are passed in the array  $\text{p_array}$  with property  "Float"  The function  $\text{random()}$  returns equally distributed float–random variables  between  $0$  and  $1$.
  • A second function  $z2$  (source code see below)  returns a special probability distribution specified by the two parameters  $I$  and  $p$.  This is done using the function  $z1$.



Hints:



Questions

1

It is valid:  $M=4$,    $\text{p_array} = \big[0.2, \ 0.3, \ 0.4, \ 0.1 \big]$.
What result does the function  $z1$  return if the random function returns the  value  $x = 0.75$  ?

$z1 \ = \ $

2

Which of the following statements are true regarding  $z1$ ?

You could omit the assignment  $\text{x = random()}$  in line 5 and compare directly with  $\text{random()}$  in line 8.
If all probabilities passed to the function are equal,  there would be faster program realizations than  $z1$.
The return value  $\text{random() = 0.2}$  leads to the result  $z1= 1$.

3

Which of the following statements are true regarding  $z2$ ?

The program generates a  "binomially distributed random variable".
The program generates a  "Poisson distributed random variable".
With  $I = 4$  the values  $0, \ 1, \ 2, \ 3, \ 4$  are possible for  $z2$.
The inclusion of the mathematical library  "math.h"  is required because in  $z2$  the function  "pow"  ("exponentiate")  is used in  $z2$.

4

What value has  $\text{p_array[2]}$  when the function  $z2$  is called with the parameters   $I = 4$  and  $p = 0.25$?

$\text{p_array[2]} \ = \ $


Solution

(1)  After the first iteration of the loop  $(m = 0)$  the variable  $\text{sum = 0.2}$,  at the next iteration  $(m = 1)$  holds  $\text{sum = 0.2 + 0.3 = 0.5}$.

  • In both cases:  $\text{sum}$  is less than  $x = 0.75$. 
  • Only at  $m = 2$  the return condition is satisfied:   $0.9 > x$.  Thus  $\underline{z1 = 2}$.


(2)  Correct are the  solutions 2 and 3:

  • If one were to dispense with the auxiliary variable  $x$  and write in line 8 instead  "$\text{sum > random()}$"  a new random value would be generated on each iteration of the loop,  and  $z1$  would then not have the desired properties.
  • $z1$  works according to the diagram on the page "Generation of multilevel random variables" in the theory section.  There you find a faster implementation for the case of equal probabilities  $(1/M)$.
  • In this case:  In the first run  $(m = 0)$  the return condition is not satisfied due to the  "Lesser/Equal"  query;  the output value is actually  $z1 = 1$.


(3)  Correct are the  solutions 1,  3,  and  4:

  • It results in a binomially distributed random variable,  with  $z2 \in \{0, 1, 2, 3, 4\}$.
  • For the calculation of the probability  ${\rm Pr}(z2 = 0) = (1 -p)^{I}$  one needs the mathematical library.
  • But exponentiation could also be realized by by multiplying   $I$  times.


(4)  Because of line 6,  before the program loop  $(i = 0)$ the field element  $\text{p_array[0]}=(1 -p)^{I}$. 

  • In the first iteration  $(i = 1)$  the following value is entered:
$$\text{p_array[1]}=\frac{ p\cdot I}{ 1- p}\cdot\text{p_array[0]}= I\cdot p\cdot(1- p)^{ I- 1}={\rm Pr}(z2= 1) .$$
  • In the second iteration  $(i = 2)$  the probability for the result  "$z2=2$"  is calculated:
$$\text{p_array[2]}=\frac{p\cdot (I- 1)}{ 2\cdot ( 1- p)}\cdot\text{p_array[1]}= \left({ I \atop { 2}}\right)\cdot p^{\rm 2}\cdot( 1- p)^{\rm 2}={\rm Pr}( z2 = 2) .$$
  • For  $I= 4$  and  $p = 0.25$  we get the following numerical value   ⇒   "$4$  over  $2$"   $=6$:
$$\text{p_array[2]}={\rm Pr}( z 2=2)=6\cdot\frac{1}{16}\cdot\frac{9}{16} \hspace{0.15cm}\underline{=0.211}.$$