Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Theory of Stochastic Signals/Exponentially Distributed Random Variables"

From LNTwww
Line 69: Line 69:
 
'''(3)'''   The weight  1/8  corresponds to the green areas in the PDF fu(u).}}  
 
'''(3)'''   The weight  1/8  corresponds to the green areas in the PDF fu(u).}}  
  
==Erzeugung einer exponentialverteilten Zufallsgröße==
+
==Generation of an exponentially distributed random variable==
 
<br>
 
<br>
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=  
$\text{Vorgehensweise:}$&nbsp;  
+
$\text{procedure:}$&nbsp;  
Nun wird vorausgesetzt, dass die zu transformierende Zufallsgröße&nbsp; u&nbsp; gleichverteilt zwischen&nbsp; 0&nbsp; (inklusive) und&nbsp; 1&nbsp; (exklusive) ist.&nbsp; Außerdem betrachten wir die monoton steigende Kennlinie
+
Now we assume that the random variable to be transformed&nbsp; u&nbsp; is uniformly distributed between&nbsp; 0&nbsp; (inclusive) and&nbsp; 1&nbsp; (exclusive).&nbsp; Moreover, we consider the monotonically increasing characteristic curve
 
:x=g1(u)=1λln (11u).
 
:x=g1(u)=1λln (11u).
  
Es  kann gezeigt werden, dass durch diese Kennlinie&nbsp; x=g1(u)&nbsp; eine  einseitig exponentialverteilte Zufallsgröße&nbsp; x&nbsp; mit folgender PDF entsteht&nbsp; <br>(Herleitung siehe [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#Herleitung_der_zugeh.C3.B6rigen_Transformationskennlinie|nächste Seite]]):  
+
It can be shown that by this characteristic&nbsp; x=g1(u)&nbsp; a one-sided exponentially distributed random variable&nbsp; x&nbsp; with the following PDF arises&nbsp; <br>(derivation see [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables/Derivation_of_the_corresponding_transformation_characteristic|next page]]):  
:$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm f\ddot{u}r}\hspace{0.2cm} {\it x}>0.$$
+
:$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\it x}>0.$$
*Für&nbsp; x=0&nbsp; ist der PDF-Wert nur halb so groß&nbsp; (λ/2).
+
*For&nbsp; x=0&nbsp; the PDF value is half&nbsp; (λ/2).
* Negative&nbsp; x-Werte treten nicht auf, da für&nbsp; 0u<1&nbsp; das Argument der (natürlichen) Logarithmus–Funktion nicht kleiner wird als&nbsp; 1.}}
+
* Negative&nbsp; x values do not occur because for&nbsp; 0u<1&nbsp; the argument of the (natural) logarithm function does not become smaller than&nbsp; 1.}}
 
   
 
   
  
Die gleiche PDF erhält man übrigens mit der monoton fallenden Kennlinie
+
By the way, the same PDF is obtained with the monotonically decreasing characteristic curve
 
:x=g2(u)=1λln (1u)=1λln(u).
 
:x=g2(u)=1λln (1u)=1λln(u).
  
Bitte beachten Sie:
+
Please note:
*Bei einer Rechnerimplementierung entsprechend der ersten Transformationskennlinie&nbsp; x=g1(u)&nbsp; ist der Wert&nbsp; u=1&nbsp; auszuschließen.
+
*When using a computer implementation corresponding to the first transformation characteristic&nbsp; x=g1(u)&nbsp; the value&nbsp; u=1&nbsp; must be excluded.
*Verwendet man die zweite Transformationskennlinie&nbsp; x=g2(u), so muss dagegen der Wert&nbsp; u=0&nbsp; ausgeschlossen werden.  
+
*If one uses the second transformation characteristic&nbsp; x=g2(u), on the other hand, the value&nbsp; u=0&nbsp; must be excluded.  
  
  
Das Lernvideo&nbsp; [[Erzeugung_einer_Exponentialverteilung_(Lernvideo)|Erzeugung einer Exponentialverteilung]]&nbsp; soll die  hier abgeleiteten Transformationen verdeutlichen.
+
The (German) learning video&nbsp; [[Erzeugung_einer_Exponentialverteilung_(Lernvideo)|Erzeugung einer Exponentialverteilung]]&nbsp; Generation of an exponential distribution, shall clarify the transformations derived here.
  
==Herleitung der zugehörigen Transformationskennlinie==
+
==Derivation of the corresponding transformation characteristic==
 
<br>
 
<br>
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=
$\text{Aufgabenstellung:}$&nbsp;  
+
$\text{Exercise:}$&nbsp;  
Nun wird die bereits auf der letzten Seite verwendete Transformationskennlinie&nbsp; x=g1(u)=g(u)&nbsp; hergeleitet, die aus einer zwischen&nbsp; 0&nbsp; und&nbsp; 1&nbsp; gleichverteilten Zufallsgröße&nbsp; u&nbsp; mit der  Wahrscheinlichkeitsdichtefunktion (PDF)&nbsp; fu(u)&nbsp; eine einseitig exponentialverteilte Zufallsgröße&nbsp; x&nbsp; mit der PDF&nbsp; fx(x)&nbsp; formt:
+
Now derive the transformation characteristic&nbsp; x=g1(u)=g(u)&nbsp; already used on the last page, which is derived from a random variable&nbsp; equally distributed between&nbsp; 0&nbsp; and&nbsp; 1&nbsp; ; u&nbsp; with the probability density function (PDF)&nbsp; fu(u)&nbsp; forms a one-sided exponentially distributed random variable&nbsp; x&nbsp; with the PDF&nbsp; fx(x)&nbsp; :
  
:$$f_{u}(u)= \left\{         \begin{array}{*{2}{c} }         1 & \rm falls\hspace{0.3cm} 0 < {\it u} < 1,\\         0.5 & \rm falls\hspace{0.3cm}   {\it u} = 0, {\it u} = 1,\\          0 & \rm sonst, \\              \end{array}    \right. \hspace{0.5cm}\Rightarrow \hspace{0.5cm}
+
:$$f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm if\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm if\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\ 0 & \rm else, \end{array}    \right. \hspace{0.5cm}\rightarrow \hspace{0.5cm}
  f_{x}(x)= \left\{         \begin{array}{*{2}{c} }        \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm falls\hspace{0.3cm}   {\it x} > 0,\\        \lambda/2 & \rm falls\hspace{0.3cm} {\it x} = 0 ,\\          0 & \rm falls\hspace{0.3cm} {\it x} < 0. \\              \end{array}    \right.$$}}
+
  f_{x}(x)= \left\{ \begin{array}{*{2}{c} }        \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm if\hspace{0.3cm} {\it x} > 0,\ \lambda/2 & \rm if\hspace{0.3cm} {\it x} = 0 ,\ 0 & \rm if\hspace{0.3cm} {\it x} < 0. \ \end{array}    \right.$$}}
  
  
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=
$\text{Problemlösung:}$&nbsp;  
+
$\text{Solution:}$&nbsp;  
  
'''(1)'''&nbsp; Ausgehend von der allgemeinen Transformationsgleichung
+
'''(1)'''&nbsp; Starting from the general transformation equation.
 
:fx(x)=fu(u)g(u)|u=h(x)
 
:fx(x)=fu(u)g(u)|u=h(x)
erhält man durch Umstellen und Einsetzen der vorgegebenen PDF fx(x):
+
is obtained by converting and substituting the given PDF fx(x):
 
:g(u)=fu(u)fx(x)|x=g(u)=1/λeλg(u).  
 
:g(u)=fu(u)fx(x)|x=g(u)=1/λeλg(u).  
Hierbei gibt&nbsp; x=g(u)&nbsp; die Ableitung der Kennlinie an, die wir als monoton steigend voraussetzen.  
+
Here&nbsp; x=g(u)&nbsp; gives the derivative of the characteristic curve, which we assume to be monotonically increasing.  
  
'''(2)'''&nbsp; Mit dieser Annahme erhält man &nbsp;|g(u)|=g(u)=dx/du&nbsp; und die Differentialgleichung &nbsp;${\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x$&nbsp; mit der Lösung &nbsp;u=Keλx.
+
'''(2)'''&nbsp; With this assumption we get &nbsp;|g(u)|=g(u)=dx/du&nbsp; and the differential equation &nbsp;{\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0. 05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x&nbsp; with solution &nbsp;u=Keλx.
  
'''(3)'''&nbsp; Aus der Bedingung, dass die Eingangsgröße &nbsp;u=0&nbsp; zum Ausgangswert &nbsp;x=0&nbsp; führen soll, erhält man für die Konstante&nbsp; K=1&nbsp; und damit &nbsp;u=1eλx.
+
'''(3)'''&nbsp; From the condition that the input quantity &nbsp;u=0&nbsp; should lead to the output value &nbsp;x=0&nbsp;, we obtain for the constant&nbsp; K=1&nbsp; and thus &nbsp;u=1eλx.
  
'''(4)'''&nbsp; Löst man diese Gleichung nach&nbsp; x&nbsp; auf, so ergibt sich die vorne angegebene Gleichung:  
+
'''(4)'''&nbsp; Solving this equation for&nbsp; x&nbsp; yields the equation given in front:  
 
:x=g1(u)=1λln(11u).
 
:x=g1(u)=1λln(11u).
  
*Bei einer Rechnerimplementierung ist allerdings sicherzustellen, dass für die gleichverteilte Eingangsgröße&nbsp; $u$&nbsp; der kritische Wert&nbsp; $1$&nbsp; ausgeschlossen wird.&nbsp;  
+
*In a computer implementation, however, ensure that the critical value&nbsp; $1$&nbsp; is excluded for the equally distributed input variable&nbsp; $u$&nbsp; &nbsp;  
*Dies wirkt sich jedoch auf das Endergebnis (fast) nicht aus. }}
+
*This, however, has (almost) no effect on the final result. }}
  
  
 
==Two-sided exponential distribution - Laplace distribution==
 
==Two-sided exponential distribution - Laplace distribution==
 
<br>
 
<br>
In engem Zusammenhang mit der Exponentialverteilung steht die sogenannte&nbsp; [https://de.wikipedia.org/wiki/Laplaceverteilung Laplaceverteilung]&nbsp; mit der Wahrscheinlichkeitsdichtefunktion
+
Closely related to the exponential distribution is the so-called&nbsp; [https://en.wikipedia.org/wiki/Laplace_distribution Laplace distrubtion]&nbsp; with the probability density function
 
:fx(x)=λ2eλ|x|.
 
:fx(x)=λ2eλ|x|.
  
Die Laplaceverteilung ist eine&nbsp; ''zweiseitige Exponentialverteilung'', die insbesondere die Amplitudenverteilung von Sprach&ndash; und Musiksignalen ausreichend gut approximiert.  
+
The Laplace distribution is a&nbsp; ''two-sided exponential distribution'' that approximates sufficiently well, in particular, the amplitude distribution of speech&ndash; and music signals.  
* Die Momente&nbsp; k&ndash;ter Ordnung &nbsp; &rArr; &nbsp; mk&nbsp; der Laplaceverteilung stimmen für geradzahliges&nbsp; k&nbsp; mit denen der Exponentialverteilung überein.
+
* The moments&nbsp; k&ndash;th order &nbsp; &rArr; &nbsp; mk&nbsp; of the Laplace distribution agree with those of the exponential distribution for even&nbsp; k&nbsp; .
* Für ungeradzahliges&nbsp; k&nbsp; ergibt sich bei der (symmetrischen) Laplaceverteilung dagegen  stets&nbsp; mk=0.
+
* For odd&nbsp; k&nbsp; on the other hand, the (symmetric) Laplace distribution always yields&nbsp; mk=0.
  
  
Zur Generierung verwendet man eine zwischen&nbsp; ±1&nbsp; gleichverteilte Zufallsgröße&nbsp; v&nbsp; (wobei&nbsp; v=0&nbsp; ausgeschlossen werden muss)&nbsp; und die Transformationskennlinie
+
For generation one uses a between&nbsp; ±1&nbsp; equally distributed random variable&nbsp; v&nbsp; (where&nbsp; v=0&nbsp; must be excluded)&nbsp; and the transformation characteristic curve
 
:x=sign(v)λln(v).
 
:x=sign(v)λln(v).
  
  
''Weitere Hinweise:''
+
Further notes:
*Aus der&nbsp; [[Aufgaben:3.8_Verstärkung_und_Begrenzung| Aufgabe 3.8]]&nbsp; erkennt man weitere Eigenschaften der Laplaceverteilung.
+
*From the&nbsp; [[Aufgaben:Exercise_3.8:_Amplification_and_Limitation| Exercise 3.8]]&nbsp; one can see further properties of the Laplace distribution.
  
*Im Lernvideo&nbsp; [[Wahrscheinlichkeit_und_WDF_(Lernvideo)|Wahrscheinlichkeit und WDF]]&nbsp; wird gezeigt, welche Bedeutung  die Laplaceverteilung für die Beschreibung von Sprach&ndash; und Musiksignalen hat.
+
*In the (German) learning video&nbsp; [[Wahrscheinlichkeit_und_WDF_(Lernvideo)|Wahrscheinlichkeit und WDF]]&nbsp; Probability and PDF, it is shown which meaning the Laplace distribution has for the description of speech&ndash; and music signals.
*Mit dem Applet&nbsp; [[Applets:WDF,_VTF_und_Momente_spezieller_Verteilungen_(Applet)|WDF, VTF und Momente]]&nbsp; können Sie sich die Kenngrößen&nbsp; (WDF, VTF, Momente)&nbsp; von Exponential- und Laplaceverteilung anzeigen lassen.
+
*With the applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|PDF, CDF and Moments]]&nbsp; you can display the characteristics&nbsp; (PDF, CDF, Moments)&nbsp; of exponential and Laplace distributions.
*Wir weisen Sie auch auf das Applet&nbsp; [[Applets:Zweidimensionale_Laplace-Zufallsgrößen_(Applet)|Zweidimensionale Laplace-Zufallsgrößen]]&nbsp; hin.
+
*We also refer you to the applet&nbsp; [[Applets:Zweidimensionale_Laplace-Zufallsgrößen_(Applet)|Two-dimensional Laplace random quantities]]&nbsp;.
 
    
 
    
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
 
[[Aufgaben:3.8 Verstärkung und Begrenzung|Aufgabe 3.8: Verstärkung und Begrenzung]]
 
[[Aufgaben:3.8 Verstärkung und Begrenzung|Aufgabe 3.8: Verstärkung und Begrenzung]]

Revision as of 00:08, 4 January 2022

One-sided exponential distribution


Definition:  A continuous random variable  x  is called (one-sided)  exponentially distributed if it can take only non–negative values and the PDF for  x>0  has the following shape:

fx(x)=λeλx.


PDF and CDF of an exponentially distributed random variable

The left image shows the  probability density function  (PDF) of such an exponentially distributed random variable  x.  Highlight:

  • The larger the distribution parameter  λ  is, the steeper the decay occurs.
  • By definition  f_{x}(0) = λ/2, i.e. the mean of left-hand limit  (0)  and right-hand limit  (\lambda).


For the  cumulative distribution function  (right graph), we obtain for  r > 0  by integration over the PDF:

F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.

The  moments  of the one-sided exponential distribution are generally equal to  

m_k = k!/λ^k.

From this and from Steiner's theorem, we get for the mean and the dispersion:

m_1={1}/{\lambda},
\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.

\text{Example 1:}  The exponential distribution has great importance for reliability studies, and the term "lifetime distribution" is also commonly used in this context.

  • In these applications, the random variable is often the time  t that elapses before a component fails.
  • Furthermore, it should be noted that the exponential distribution is closely related to the  Poisson distribution .

Transformation of random variables


To generate such an exponentially distributed random variable on a digital computer, for example, a  nonlinear transformation  The underlying principle is first stated here in general terms.

\text{Procedure:}  If a continuous random variable  u  possesses the PDF  f_{u}(u), then the probability density function of the random variable transformed at the nonlinear characteristic  x = g(u)  x holds:

f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.

Here  g\hspace{0.05cm}'(u)  denotes the derivative of the characteristic curve  g(u)  and  h(x)  gives the inverse function to  g(u)  .


  • The above equation is valid, however, only under the condition that the derivative  g\hspace{0.03cm}'(u) \ne 0  .
  • For a characteristic with horizontal sections  (g\hspace{0.05cm}'(u) = 0)  additional Dirac functions appear in the PDF if the input quantity has components in the range.
  • The weights of these Dirac functions are equal to the probabilities that the input quantity lies in these domains.


To transform random variables

\text{Example 2:}  Given a random variable distributed between  -2  and  +2  triangularly  u  on a nonlinearity with characteristic  x = g(u),

  • which, in the range  \vert u \vert ≤ 1  triples the input values,  and
  • mapping all values  \vert u \vert > 1  to  x = \pm 3  depending on the sign,


then the PDF f_{x}(x) sketched on the right is obtained.


Please note:

(1)   Due to the amplification by a factor of  3  f_{x}(x)  is wider and lower than f_{u}(u) by this factor.

(2)   The two horizontal limits of the characteristic at  u = ±1  lead to the two Dirac functions at  x = ±3, each with weight  1/8.

(3)   The weight  1/8  corresponds to the green areas in the PDF f_{u}(u).

Generation of an exponentially distributed random variable


\text{procedure:}  Now we assume that the random variable to be transformed  u  is uniformly distributed between  0  (inclusive) and  1  (exclusive).  Moreover, we consider the monotonically increasing characteristic curve

x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).

It can be shown that by this characteristic  x=g_1(u)  a one-sided exponentially distributed random variable  x  with the following PDF arises 
(derivation see next page):

f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\it x}>0.
  • For  x = 0  the PDF value is half  (\lambda/2).
  • Negative  x values do not occur because for  0 ≤ u < 1  the argument of the (natural) logarithm function does not become smaller than  1.


By the way, the same PDF is obtained with the monotonically decreasing characteristic curve

x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).

Please note:

  • When using a computer implementation corresponding to the first transformation characteristic  x=g_1(u)  the value  u = 1  must be excluded.
  • If one uses the second transformation characteristic  x=g_2(u), on the other hand, the value  u =0  must be excluded.


The (German) learning video  Erzeugung einer Exponentialverteilung  \Rightarrow Generation of an exponential distribution, shall clarify the transformations derived here.

Derivation of the corresponding transformation characteristic


\text{Exercise:}  Now derive the transformation characteristic  x = g_1(u)= g(u)  already used on the last page, which is derived from a random variable  equally distributed between  0  and  1  ; u  with the probability density function (PDF)  f_{u}(u)  forms a one-sided exponentially distributed random variable  x  with the PDF  f_{x}(x)  :

f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm if\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm if\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\ 0 & \rm else, \end{array} \right. \hspace{0.5cm}\rightarrow \hspace{0.5cm} f_{x}(x)= \left\{ \begin{array}{*{2}{c} } \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm if\hspace{0.3cm} {\it x} > 0,\ \lambda/2 & \rm if\hspace{0.3cm} {\it x} = 0 ,\ 0 & \rm if\hspace{0.3cm} {\it x} < 0. \ \end{array} \right.


\text{Solution:} 

(1)  Starting from the general transformation equation.

f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}

is obtained by converting and substituting the given PDF f_{ x}(x):

\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.

Here  x = g\hspace{0.05cm}'(u)  gives the derivative of the characteristic curve, which we assume to be monotonically increasing.

(2)  With this assumption we get  \vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u  and the differential equation  {\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0. 05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x  with solution  u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.

(3)  From the condition that the input quantity  u =0  should lead to the output value  x =0 , we obtain for the constant  K =1  and thus  u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.

(4)  Solving this equation for  x  yields the equation given in front:

x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .
  • In a computer implementation, however, ensure that the critical value  1  is excluded for the equally distributed input variable  u   
  • This, however, has (almost) no effect on the final result.


Two-sided exponential distribution - Laplace distribution


Closely related to the exponential distribution is the so-called  Laplace distrubtion  with the probability density function

f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.

The Laplace distribution is a  two-sided exponential distribution that approximates sufficiently well, in particular, the amplitude distribution of speech– and music signals.

  • The moments  k–th order   ⇒   m_k  of the Laplace distribution agree with those of the exponential distribution for even  k  .
  • For odd  k  on the other hand, the (symmetric) Laplace distribution always yields  m_k= 0.


For generation one uses a between  ±1  equally distributed random variable  v  (where  v = 0  must be excluded)  and the transformation characteristic curve

x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).


Further notes:

  • From the  Exercise 3.8  one can see further properties of the Laplace distribution.
  • In the (German) learning video  Wahrscheinlichkeit und WDF  \Rightarrow Probability and PDF, it is shown which meaning the Laplace distribution has for the description of speech– and music signals.
  • With the applet  PDF, CDF and Moments  you can display the characteristics  (PDF, CDF, Moments)  of exponential and Laplace distributions.
  • We also refer you to the applet  Two-dimensional Laplace random quantities .


Exercises for the chapter


Aufgabe 3.8: Verstärkung und Begrenzung

Aufgabe 3.8Z: Kreis(ring)fläche

Aufgabe 3.9: Kennlinie für Cosinus-WDF

Aufgabe 3.9Z: Sinustransformation