Difference between revisions of "Aufgaben:Exercise 4.2: Rectangular Spectra"
Line 52: | Line 52: | ||
'''2.''' Das BP-Spektrum kann mit $f_T$ = 4 kHz wie folgt dargestellt werden: | '''2.''' Das BP-Spektrum kann mit $f_T$ = 4 kHz wie folgt dargestellt werden: | ||
− | $$W(f) \hspace{-0.15 cm} & = | + | $$\begin{align*} W(f) \hspace{-0.15 cm} & = \hspace{-0.15 cm}U(f- f_{\rm T}) + U(f+ f_{\rm T}) = \\ |
− | & = | + | & = \hspace{-0.15 cm} U(f)\star \left[ |
− | \delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].$$ | + | \delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].\end{align*}$$ |
Entsprechend dem Verschiebungssatz gilt dann für das dazugehörige Zeitsignal: | Entsprechend dem Verschiebungssatz gilt dann für das dazugehörige Zeitsignal: | ||
− | $$begin{align*} w(t) \hspace{-0.15 cm} & = \hspace{-0.15 cm} 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = \\ | + | $$\begin{align*} w(t) \hspace{-0.15 cm} & = \hspace{-0.15 cm} 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = \\ |
& = \hspace{-0.15 cm} 2 u_0 | & = \hspace{-0.15 cm} 2 u_0 | ||
− | \cdot {\rm si} ( \pi \frac{t}{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t). end{align*}$$ | + | \cdot {\rm si} ( \pi \frac{t}{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t). \end{align*}$$ |
Die Grafik zeigt | Die Grafik zeigt | ||
Line 72: | Line 72: | ||
Der Zeitpunkt $t$ = 62.5 μs entspricht genau einer viertel Periodendauer des Signals $c(t)$: | Der Zeitpunkt $t$ = 62.5 μs entspricht genau einer viertel Periodendauer des Signals $c(t)$: | ||
− | $$ w(t = 62.5 \hspace{0.05cm}{\rm \mu s}) & = | + | $$\begin{align*} w(t = 62.5 \hspace{0.05cm}{\rm \mu s}) & = 2 u_0 \cdot{\rm si} ( \pi \frac{62.5 \hspace{0.05cm}{\rm \mu s}} |
{500 \hspace{0.05cm}{\rm \mu s}}) | {500 \hspace{0.05cm}{\rm \mu s}}) | ||
\cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot | \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot | ||
− | 62.5 \hspace{0.05cm}{\rm \mu s}) \\ & = | + | 62.5 \hspace{0.05cm}{\rm \mu s}) \\ & = |
− | 4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.$$ | + | 4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.\end{align*}$$ |
'''3.''' Vergleicht man die Spektralfunktion $W(f)$ dieser Aufgabe mit dem Spektrum $D(f)$ in der Musterlösung zu Aufgabe A4.1, so erkennt man, dass $w(t)$ und $d(t)$ identische Signale sind. Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit $f_2$ = 2 kHz kann für das hier betrachtete Signal geschrieben werden: | '''3.''' Vergleicht man die Spektralfunktion $W(f)$ dieser Aufgabe mit dem Spektrum $D(f)$ in der Musterlösung zu Aufgabe A4.1, so erkennt man, dass $w(t)$ und $d(t)$ identische Signale sind. Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit $f_2$ = 2 kHz kann für das hier betrachtete Signal geschrieben werden: |
Revision as of 18:20, 19 April 2016
Wir betrachten zwei Signale $u(t)$ und $w(t)$ mit jeweils rechteckförmigen Spektralfunktionen $U(f)$ bzw. $W(f)$. Es ist offensichtlich, dass
$$u(t) = u_0 \cdot {\rm si} ( \pi \cdot {t}/{T_{ u}})$$
ein TP–Signal ist, dessen zwei Parameter $u_0$ und $T_u$ in der Teilaufgabe 1) zu bestimmen sind. Dagegen zeigt das Spektrum $W(f)$, dass $w(t)$ ein BP–Signal beschreibt. In dieser Aufgabe wird außerdem auf das BP–Signal
$$d(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 \hspace{0.05cm}t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2\hspace{0.05cm} t)$$
Bezug genommen, dessen Spektrum in Aufgabe A4.1 ermittelt wurde. Es sei $f_2$ = 2 kHz. Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 4.1. Berücksichtigen Sie bei der Lösung die folgende trigonometrische Beziehung:
$$\sin (\alpha) \cdot \cos (\beta) = \frac{1}{2}\left[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\right].$$
Fragebogen
Musterlösung
1. a) Die Zeit $T_u$, welche die erste Nullstelle des TP-Signals $u(t)$ angibt, ist gleich dem Kehrwert der Breite des Rechteckspektrums, also 1/(2 kHz) = 0.5 ms. Die Impulsamplitude ist, wie in der Musterlösung zur Aufgabe A4.1 ausführlich dargelegt wurde, gleich der Rechteckfläche. Daraus folgt $u_0$ = 2V.
2. Das BP-Spektrum kann mit $f_T$ = 4 kHz wie folgt dargestellt werden:
$$\begin{align*} W(f) \hspace{-0.15 cm} & = \hspace{-0.15 cm}U(f- f_{\rm T}) + U(f+ f_{\rm T}) = \\ & = \hspace{-0.15 cm} U(f)\star \left[ \delta(f- f_{\rm T})+ \delta(f+ f_{\rm T})\right].\end{align*}$$
Entsprechend dem Verschiebungssatz gilt dann für das dazugehörige Zeitsignal:
$$\begin{align*} w(t) \hspace{-0.15 cm} & = \hspace{-0.15 cm} 2 \cdot u(t) \cdot {\cos} ( 2 \pi f_{\rm T} t) = \\ & = \hspace{-0.15 cm} 2 u_0 \cdot {\rm si} ( \pi \frac{t}{T_{\rm u}})\cdot {\cos} ( 2 \pi f_{\rm T} t). \end{align*}$$
Die Grafik zeigt oben das TP-Signal $u(t)$, dann die Schwingung $c(t)$ = 2 · cos(2 $\pi fTt$ ), unten das BP-Signal $w(t) = u(t) \cdot c(t)$. Insbesondere erhält man zum Zeitpunkt $t = 0$:
$$w(t = 0) = 2 \cdot u_0 \hspace{0.15 cm}\underline{= 4 \hspace{0.05cm}{\rm V}}.$$
Der Zeitpunkt $t$ = 62.5 μs entspricht genau einer viertel Periodendauer des Signals $c(t)$:
$$\begin{align*} w(t = 62.5 \hspace{0.05cm}{\rm \mu s}) & = 2 u_0 \cdot{\rm si} ( \pi \frac{62.5 \hspace{0.05cm}{\rm \mu s}} {500 \hspace{0.05cm}{\rm \mu s}}) \cdot {\cos} ( 2 \pi \cdot 4\hspace{0.05cm}{\rm kHz}\cdot 62.5 \hspace{0.05cm}{\rm \mu s}) \\ & = 4\hspace{0.05cm}{\rm V}\cdot{\rm si} ( {\pi}/{8}) \cdot \cos ( {\pi}/{4})\hspace{0.15 cm}\underline{ = 0}.\end{align*}$$
3. Vergleicht man die Spektralfunktion $W(f)$ dieser Aufgabe mit dem Spektrum $D(f)$ in der Musterlösung zu Aufgabe A4.1, so erkennt man, dass $w(t)$ und $d(t)$ identische Signale sind. Etwas aufwändiger ist dieser Beweis im Zeitbereich. Mit $f_2$ = 2 kHz kann für das hier betrachtete Signal geschrieben werden:
$$w(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi f_2 t) \cdot {\cos} ( 4 \pi f_2 t) = ({4\hspace{0.05cm}{\rm V}})/({\pi f_2 t})\cdot \sin (\pi f_2 t) \cdot \cos ( 4 \pi f_2 t) .$$
Wegen der trigonometrischen Beziehung
$$\sin (\alpha) \cdot \cos (\beta) = {1}/{2} \cdot \left[ \sin (\alpha + \beta)+ \sin (\alpha - \beta)\right]$$
kann obige Gleichung umgeformt werden:
$$w(t ) = \frac{2\hspace{0.05cm}{\rm V}}{\pi f_2 t}\cdot \left[\sin (5\pi f_2 t) + \sin (-3\pi f_2 t)\right] = 10\hspace{0.05cm}{\rm V} \cdot \frac{\sin (5\pi f_2 t)}{5\pi f_2 t}- 6\hspace{0.05cm}{\rm V} \cdot \frac{\sin (3\pi f_2 t)}{3\pi f_2 t}.$$
Damit ist gezeigt, dass beide Signale tatsächlich identisch sind ⇒ Lösungsvorschlag 1:
$$w(t) = 10 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 5 \pi f_2 t) - 6 \hspace{0.05cm}{\rm V} \cdot {\rm si} ( 3 \pi f_2 t) = d(t).$$