Difference between revisions of "Aufgaben:Exercise 4.4: Two-dimensional Gaussian PDF"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variablesn
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables
 
}}
 
}}
  
Line 31: Line 31:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der Aussagen gelten hinsichtlich der 2D-Zufallsgr&ouml;&szlig;e&nbsp; $(u, v)$&nbsp;?
+
{Which of the statements are true with respect to 2D random variable&nbsp; $(u, v)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die Zufallsgr&ouml;&szlig;en&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; sind unkorreliert.
+
+ The random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.
+ Die Zufallsgr&ouml;&szlig;en&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; sind statistisch unabh&auml;ngig.
+
+ The random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are statistically independent.
  
  
{Berechnen Sie die beiden Streuungen&nbsp; $\sigma_u$&nbsp; und&nbsp; $\sigma_v$.&nbsp; Geben Sie zur Kontrolle den Quotienten der beiden Streuungen ein.
+
{Calculate the two standard deviations&nbsp; $\sigma_u$&nbsp; and&nbsp; $\sigma_v$.&nbsp; Enter the quotient of the two standard deviations as a check.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_u/\sigma_v \ = \ $ { 0.5 3% }
 
$\sigma_u/\sigma_v \ = \ $ { 0.5 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass&nbsp; $u$&nbsp; kleiner als&nbsp; $1$&nbsp; ist.
+
{Calculate the probability that&nbsp; $u$&nbsp; is less than&nbsp; $1$&nbsp;.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(u < 1)\ = \ $ { 0.9772 3% }
+
${\rm Pr}(u < 1)\ = \ $ { 0.9772 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e&nbsp; $u$&nbsp; kleiner als&nbsp; $1$&nbsp; und gleichzeitig die Zufallsgr&ouml;&szlig;e&nbsp; $v$&nbsp; gr&ouml;&szlig;er als&nbsp; $1$&nbsp; ist.
+
{Calculate the probability that the random variable&nbsp; $u$&nbsp; is less than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $v$&nbsp; is greater than&nbsp; $1$&nbsp; .
 
|type="{}"}
 
|type="{}"}
${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $ { 0.1551 3% }
+
${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $ { 0.1551 3% }
  
  
{Welche der Aussagen sind f&uuml;r die 2D&ndash;Zufallsgr&ouml;&szlig;e&nbsp; $(x, y)$&nbsp; zutreffend?
+
{Which of the statements are true for the 2D&ndash;random variable&nbsp; $(x, y)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die 2D-WDF $f_{xy}(x, y)$&nbsp; ist au&szlig;erhalb der Geraden&nbsp; $y = 2x$&nbsp; stets Null.
+
+ The 2D PDF $f_{xy}(x, y)$&nbsp; is always zero outside the straight line&nbsp; $y = 2x$&nbsp;.
- F&uuml;r alle Wertepaare auf der Geraden&nbsp; $y = 2x$&nbsp; gilt $f_{xy}(x, y)= 0.5$.
+
- For all pairs of values on the straight line $y = 2x$&nbsp; $f_{xy}(x, y)= 0.5$.
+ Bez&uuml;glich der Rand-WDF gilt $f_{x}(x) = f_{u}(u)$&nbsp; sowie $f_{y}(y) = f_{v}(v)$.
+
+ With respect to the edge PDF, $f_{x}(x) = f_{u}(u)$&nbsp; and $f_{y}(y) = f_{v}(v)$ holds.
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass&nbsp; $x$&nbsp; kleiner als&nbsp; $1$&nbsp; ist.
+
{Calculate the probability that&nbsp; $x$&nbsp; is less than&nbsp; $1$&nbsp;.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(x < 1)\ = \ $ { 0.9772 3% }
+
${\rm Pr}(x < 1)\ = \ $ { 0.9772 3% }
  
  
{Berechnen Sie nun die Wahrscheinlichkeit, dass die Zufallsgr&ouml;&szlig;e&nbsp; $x$&nbsp; kleiner als&nbsp; $1$&nbsp; und gleichzeitig die Zufallsgr&ouml;&szlig;e&nbsp; $y$&nbsp; gr&ouml;&szlig;er als&nbsp; $1$&nbsp; ist.
+
{Now calculate the probability that the random variable&nbsp; $x$&nbsp; is smaller than&nbsp; $1$&nbsp; and at the same time the random variable&nbsp; $y$&nbsp; is larger than&nbsp; $1$&nbsp; .
 
|type="{}"}
 
|type="{}"}
${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $ { 0.1359 3% }
+
${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $ { 0.1359 3% }
  
  
Line 75: Line 75:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Beide Aussagen treffen zu</u>:  
+
'''(1)'''&nbsp; <u>Both statements are true</u>:  
*Vergleicht man die gegebene 2D-WDF mit der allgemeing&uuml;ltigen 2D-WDF
+
*Comparing the given 2D PDF with the general 2D PDF.
:$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
+
$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
  
:so erkennt man, dass im Exponenten kein Term mit&nbsp; $u \cdot v$&nbsp; auftritt, was nur bei&nbsp; $\rho_{uv} = 0$&nbsp; m&ouml;glich ist.  
+
:so it can be seen that no term with&nbsp; $u \cdot v$&nbsp; occurs in the exponent, which is only possible with&nbsp; $\rho_{uv} = 0$&nbsp; m&ouml;gible.  
*Dies bedeutet aber, dass&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; unkorreliert sind.  
+
*But this means that&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; are uncorrelated.  
*Bei Gau&szlig;schen Zufallsgr&ouml;&szlig;en folgt aus der Unkorreliertheit aber auch stets die statistische Unabh&auml;ngigkeit.
+
*For Gaussian random variables, however, statistical independence always follows from uncorrelatedness.
  
  
  
'''(2)'''&nbsp; Bei statistischer Unabh&auml;ngigkeit gilt:
+
'''(2)'''&nbsp; With statistical independence holds:
 
:$$f_{uv}(u, v) = f_u(u)\cdot f_v(v), \hspace{0.5cm}  
 
:$$f_{uv}(u, v) = f_u(u)\cdot f_v(v), \hspace{0.5cm}  
 
f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , \hspace{0.5cm} \it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
 
f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , \hspace{0.5cm} \it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
  
*Durch Koeffizientenvergleich erh&auml;lt man&nbsp; $\sigma_u = 0.5$&nbsp; und&nbsp; $\sigma_v = 1$.  
+
*By comparing coefficients, we get&nbsp; $\sigma_u = 0.5$&nbsp; and&nbsp; $\sigma_v = 1$.  
*Der Quotient ist somit&nbsp; $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.
+
*The quotient is thus&nbsp; $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.
  
  
  
[[File:P_ID265__Sto_A_4_4_d.png|right|frame|Wahrscheinlichkeit: &nbsp; $\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$]]
+
[[File:P_ID265__Sto_A_4_4_d.png|right|frame|Probability: &nbsp; $\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$]]
'''(3)'''&nbsp; Da&nbsp; $u$&nbsp; eine kontinuierliche Zufallsgr&ouml;&szlig;e ist, gilt:
+
'''(3)'''&nbsp; Since&nbsp; $u$&nbsp; is a continuous random variable, holds:
 
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
 
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
  
*Mit dem  Mittelwert&nbsp; $m_u = 0$&nbsp; und der  Streuung&nbsp; $\sigma_u = 0.5$&nbsp; erhält man:
+
*With the mean&nbsp; $m_u = 0$&nbsp; and the standard deviation&nbsp; $\sigma_u = 0.5$&nbsp; we get:
 
:$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$
 
:$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$
  
  
  
'''(4)'''&nbsp; Aufgrund der statistischen Unabh&auml;ngigkeit zwischen&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; gilt:
+
'''(4)'''&nbsp; Due to the statistical independence between&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; holds:
 
:$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
 
:$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
  
*Die Wahrscheinlichkeit&nbsp; ${\rm Pr}(u < 1) =0.9772$&nbsp; wurde bereits  berechnet.  
+
*The probability&nbsp; ${\rm Pr}(u < 1) =0.9772$&nbsp; has already been calculated.  
*F&uuml;r die zweite Wahrscheinlichkeit&nbsp; ${\rm Pr}(v > 1)$&nbsp; gilt aus Symmetriegr&uuml;nden:
+
*For the second probability&nbsp; ${\rm Pr}(v > 1)$&nbsp; holds for reasons of symmetry:
 
:$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
 
:$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
 
:$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
 
:$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
  
Die Skizze verdeutlicht die vorgegebene Konstellation:  
+
The sketch illustrates the given constellation:  
*Die H&ouml;henlinien der WDF (blau) sind wegen&nbsp; $\sigma_v > \sigma_u$&nbsp; in vertikaler Richtung gestreckte Ellipsen.  
+
*The PDF (blue) height lines are stretched ellipses due to&nbsp; $\sigma_v > \sigma_u$&nbsp; in vertical direction.  
*Rot schraffiert eingezeichnet ist das Gebiet, dessen Wahrscheinlichkeit in dieser Teilaufgabe berechnet werden sollte.
+
*Drawn in red shading is the area whose probability should be calculated in this subtask.
  
  
  
[[File:P_ID266__Sto_A_4_4_e.png|right|frame|2D-Diracwand auf der Korrelationsgeraden]]
+
[[File:P_ID266__Sto_A_4_4_e.png|right|frame|2D Dirac "wall" on the correlation line]]
'''(5)'''&nbsp; Richtig sind <u>der erste und der dritte Lösungsvorschlag</u>:
+
'''(5)'''&nbsp; Correct are <u>the first and the third suggested solutions</u>:
*Wegen&nbsp; $\rho_{xy} = 1$&nbsp; besteht ein deterministischer Zusammenhang zwischen&nbsp; $x$&nbsp; und&nbsp; $y$  
+
*Because&nbsp; $\rho_{xy} = 1$&nbsp; there is a deterministic correlation between&nbsp; $x$&nbsp; and&nbsp; $y$  
:&#8658; &nbsp; Alle Werte liegen auf der Geraden&nbsp; $y =K(x) \cdot x$.  
+
:&#8658; &nbsp; All values lie on the straight line&nbsp; $y =K(x) \cdot x$.  
*Aufgrund der Streuungen&nbsp; $\sigma_x = 0.5$&nbsp; und&nbsp; $\sigma_y = 1$&nbsp; gilt&nbsp; $K = 2$.
+
*Because of the standard deviations&nbsp; $\sigma_x = 0.5$&nbsp; and&nbsp; $\sigma_y = 1$&nbsp; it holds&nbsp; $K = 2$.
*Auf dieser Geraden&nbsp; $y = 2x$&nbsp; sind alle WDF-Werte unendlich gro&szlig;.  
+
*On this straight line&nbsp; $y = 2x$&nbsp; all PDF values are infinitely large.  
*Das bedeutet: &nbsp; Die 2D-WDF ist hier eine "Diracwand".
+
*This means: &nbsp; The 2D PDF is here a "Dirac wall".
*Wie aus der Skizze hervorgeht, sind die WDF&ndash;Werte auf der Geraden&nbsp; $y = 2x$&nbsp; gau&szlig;verteilt.
+
*As you can see from the sketch, the PDF values are distributed evenly on the straight line $y = 2x$&nbsp.
*Die Gerade&nbsp; $y = 2x$&nbsp; stellt gleichzeitig die Korrelationsgerade dar.   
+
*The straight line&nbsp; $y = 2x$&nbsp; also represents the correlation line.   
*Auch die beiden Randwahrscheinlichkeitsdichten sind Gau&szlig;funktionen, jeweils mit Mittelwert Null.  
+
*The two marginal probability densities are also Gaussian functions, each with zero mean.  
*Wegen&nbsp; $\sigma_x = \sigma_u$&nbsp; und&nbsp; $\sigma_y = \sigma_v$&nbsp; gilt auch:
+
*Because&nbsp; $\sigma_x = \sigma_u$&nbsp; and&nbsp; $\sigma_y = \sigma_v$&nbsp; also holds:
:$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$
+
:$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$
  
  
[[File:P_ID274__Sto_A_4_4_g.png|right|frame|Wahrscheinlichkeitsberechnung für die Diracwand]]
+
[[File:P_ID274__Sto_A_4_4_g.png|right|frame|Probability calculation for the Dirac wall]]
'''(6)'''&nbsp; Da die WDF der Zufallsgr&ouml;&szlig;e&nbsp; $x$&nbsp; identisch mit der WDF&nbsp; $f_u(u)$ ist, ergibt sich auch genau die gleiche Wahrscheinlichkeit wie in der Teilaufgabe&nbsp; '''(3)'''&nbsp; berechnet:
+
'''(6)'''&nbsp; Since the PDF of the random variable is&ouml;&aerospace;e&nbsp; $x$&nbsp; identical to the PDF&nbsp; $f_u(u)$, it also results in exactly the same probability as calculated in the subtask&nbsp; '''(3)'''&nbsp; :
 
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
 
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
  
  
  
'''(7)'''&nbsp; Das Zufallsereignis&nbsp; $y > 1$&nbsp; ist identisch mit dem Ereignis&nbsp; $x > 0.5$.&nbsp;  
+
'''(7)'''&nbsp; The random event&nbsp; $y > 1$&nbsp; is identical to the event&nbsp; $x > 0.5$.&nbsp;  
*Damit ist die gesuchte Wahrscheinlichkeit gleich
+
*Thus, the wanted probability is equal to.
 
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \it F_x \rm( 1) - \it F_x\rm (0.5).  $$
 
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \it F_x \rm( 1) - \it F_x\rm (0.5).  $$
  
*Mit der Streuung&nbsp; $\sigma_x = 0.5$&nbsp; folgt weiter:
+
*With the standard deviation&nbsp; $\sigma_x = 0.5$&nbsp; follows further:
 
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
 
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 22:20, 23 January 2022

table: Gaussian error functions

We consider two-dimensional random variables, where both components are always assumed to be mean-free.

  • The 2D PDF of the random variable  $(u, v)$  is:
$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
  • The following parameters are known from the 2D random variable $(x, y)$  which is also Gaussian:
$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$

The values of the Gaussian error integral  ${\rm \phi}(x)$  and the complementary function  ${\rm Q}(x) = 1- {\rm \phi}(x)$  can be found in the adjacent table.





Hints:

Part 1:   Gaussian random variables without statistical bindings,
Part 2:   Gaussian random variables with statistical bindings.



Questions

1

Which of the statements are true with respect to 2D random variable  $(u, v)$ ?

The random variables  $u$  and  $v$  are uncorrelated.
The random variables  $u$  and  $v$  are statistically independent.

2

Calculate the two standard deviations  $\sigma_u$  and  $\sigma_v$.  Enter the quotient of the two standard deviations as a check.

$\sigma_u/\sigma_v \ = \ $

3

Calculate the probability that  $u$  is less than  $1$ .

${\rm Pr}(u < 1)\ = \ $

4

Calculate the probability that the random variable  $u$  is less than  $1$  and at the same time the random variable  $v$  is greater than  $1$  .

${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $

5

Which of the statements are true for the 2D–random variable  $(x, y)$ ?

The 2D PDF $f_{xy}(x, y)$  is always zero outside the straight line  $y = 2x$ .
For all pairs of values on the straight line $y = 2x$  $f_{xy}(x, y)= 0.5$.
With respect to the edge PDF, $f_{x}(x) = f_{u}(u)$  and $f_{y}(y) = f_{v}(v)$ holds.

6

Calculate the probability that  $x$  is less than  $1$ .

${\rm Pr}(x < 1)\ = \ $

7

Now calculate the probability that the random variable  $x$  is smaller than  $1$  and at the same time the random variable  $y$  is larger than  $1$  .

${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $


Solution

(1)  Both statements are true:

  • Comparing the given 2D PDF with the general 2D PDF.

$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$

so it can be seen that no term with  $u \cdot v$  occurs in the exponent, which is only possible with  $\rho_{uv} = 0$  mögible.
  • But this means that  $u$  and  $v$  are uncorrelated.
  • For Gaussian random variables, however, statistical independence always follows from uncorrelatedness.


(2)  With statistical independence holds:

$$f_{uv}(u, v) = f_u(u)\cdot f_v(v), \hspace{0.5cm} f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , \hspace{0.5cm} \it f_v{\rm (}v{\rm )}=\frac{{\rm e}^{-{\it v^{\rm 2}}/{{\rm (}{\rm 2}\sigma_v^{\rm 2}{\rm )}}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$
  • By comparing coefficients, we get  $\sigma_u = 0.5$  and  $\sigma_v = 1$.
  • The quotient is thus  $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.


Probability:   $\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$

(3)  Since  $u$  is a continuous random variable, holds:

$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
  • With the mean  $m_u = 0$  and the standard deviation  $\sigma_u = 0.5$  we get:
$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$


(4)  Due to the statistical independence between  $u$  and  $v$  holds:

$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
  • The probability  ${\rm Pr}(u < 1) =0.9772$  has already been calculated.
  • For the second probability  ${\rm Pr}(v > 1)$  holds for reasons of symmetry:
$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$

The sketch illustrates the given constellation:

  • The PDF (blue) height lines are stretched ellipses due to  $\sigma_v > \sigma_u$  in vertical direction.
  • Drawn in red shading is the area whose probability should be calculated in this subtask.


2D Dirac "wall" on the correlation line

(5)  Correct are the first and the third suggested solutions:

  • Because  $\rho_{xy} = 1$  there is a deterministic correlation between  $x$  and  $y$
⇒   All values lie on the straight line  $y =K(x) \cdot x$.
  • Because of the standard deviations  $\sigma_x = 0.5$  and  $\sigma_y = 1$  it holds  $K = 2$.
  • On this straight line  $y = 2x$  all PDF values are infinitely large.
  • This means:   The 2D PDF is here a "Dirac wall".
  • As you can see from the sketch, the PDF values are distributed evenly on the straight line $y = 2x$&nbsp.
  • The straight line  $y = 2x$  also represents the correlation line.
  • The two marginal probability densities are also Gaussian functions, each with zero mean.
  • Because  $\sigma_x = \sigma_u$  and  $\sigma_y = \sigma_v$  also holds:
$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$


Probability calculation for the Dirac wall

(6)  Since the PDF of the random variable isö&aerospace;e  $x$  identical to the PDF  $f_u(u)$, it also results in exactly the same probability as calculated in the subtask  (3)  :

$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$


(7)  The random event  $y > 1$  is identical to the event  $x > 0.5$. 

  • Thus, the wanted probability is equal to.
$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \it F_x \rm( 1) - \it F_x\rm (0.5). $$
  • With the standard deviation  $\sigma_x = 0.5$  follows further:
$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$