Difference between revisions of "Aufgaben:Exercise 4.2: Triangle Area again"
Line 67: | Line 67: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Correct is the <u>middle proposition</u>: | + | '''(1)''' Correct is the <u>middle proposition</u>: |
*Both $y_1(x)$ and $y_2(x)$ intersect the $y$-axis at $y= 1$. | *Both $y_1(x)$ and $y_2(x)$ intersect the $y$-axis at $y= 1$. | ||
− | *The lower boundary line has slope $0.5$, the upper has slope $1$. | + | *The lower boundary line has slope $0.5$, the upper has slope $1$. |
Line 78: | Line 78: | ||
*This leads to the integral or final result: | *This leads to the integral or final result: | ||
:$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$ | :$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$ | ||
− | '''(3)''' Since both random variables each have a nonzero mean, it follows | + | |
− | [[File:P_ID223__Sto_A_4_2_d.png|right|frame| | + | '''(3)''' Since both random variables each have a nonzero mean, it follows for the covariance: |
+ | [[File:P_ID223__Sto_A_4_2_d.png|right|frame|Correlation line]] | ||
:$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$ | :$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$ | ||
− | + | '''(4)''' With the given rms values we obtain: | |
− | |||
− | '''(4)''' With the given rms we obtain: | ||
:$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$ | :$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$ | ||
− | '''(5)''' For the correlation line (KG), in general: | + | '''(5)''' For the correlation line ("KG" in the graph), in general: |
:$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$ | :$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$ | ||
− | + | *Using the numerical values calculated above, we obtain | |
− | *Using the numerical values calculated above, we obtain | ||
:$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$ | :$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$ | ||
− | + | *The correlation line intersects the $y$-axis at $\underline{y=1}$ and also passes through the point $(4, 4)$. | |
− | The correlation line intersects the $y$-axis at $\underline{y=1}$ and also passes through the point $(4, 4)$. Any other result would | + | *Any other result would be impossible to interpret considering the definition area: |
− | + | ::If one sets $m_x = 8/3$, one obtains $y = m_y = 3$. | |
− | *This means: The calculated correlation line actually passes through the point $(m_x, m_y)$, as the theory says. | + | *This means: The calculated correlation line actually passes through the point $(m_x, m_y)$, as the theory says. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 13:44, 7 February 2022
We consider the same random variable $(x, \ y)$ as in Exercise 4.1:
- In a domain defined by vertices $(0,\ 1)$, $(4,\ 3)$, and $(4,\ 5)$ let the 2D–PDF $f_{xy} (x, y) = 0.25$.
- There are no values outside this definition area $D$ marked in red in the graph.
Furthermore, the two marginal probability densities with respect to the quantities $x$ and $y$ are drawn in the graph, which have already been determined in Exercise 4.1.
From this, the equations of chapter Expected Values and Moments can be used to determine the characteristics of the two random variables:
- $$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
- $$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$
Due to the fact that the definition domain $D$ is bounded by two straight lines $y_1(x)$ and $y_2(x)$ , the first order joint moment can be calculated here as follows.
- $$m_{xy}={\rm E}\big[x\cdot y\big]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$
Hints:
- The Exercise belongs to the chapter Two-Dimensional Random Variables.
- Reference is also made to the chapter Expected Values and Moments.
Questions
Solution
- Both $y_1(x)$ and $y_2(x)$ intersect the $y$-axis at $y= 1$.
- The lower boundary line has slope $0.5$, the upper has slope $1$.
(2) According to the clues we get:
- $$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot y \, \,{\rm d}y\,\, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big] \,\, {\rm d}x. $$
- This leads to the integral or final result:
- $$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
(3) Since both random variables each have a nonzero mean, it follows for the covariance:
- $$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
(4) With the given rms values we obtain:
- $$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
(5) For the correlation line ("KG" in the graph), in general:
- $$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
- Using the numerical values calculated above, we obtain
- $$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$
- The correlation line intersects the $y$-axis at $\underline{y=1}$ and also passes through the point $(4, 4)$.
- Any other result would be impossible to interpret considering the definition area:
- If one sets $m_x = 8/3$, one obtains $y = m_y = 3$.
- This means: The calculated correlation line actually passes through the point $(m_x, m_y)$, as the theory says.