Difference between revisions of "Aufgaben:Exercise 4.16: Eigenvalues and Eigenvectors"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Verallgemeinerung auf N-dimensionale Zufallsgrößen
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID671__Sto_A_4_16.png|right|frame|Drei Korrelationsmatrizen]]
+
[[File:P_ID671__Sto_A_4_16.png|right|frame|Three correlation matrices]]
Obwohl die Beschreibung Gaußscher Zufallsgrößen mit Hilfe von Vektoren und Matrizen eigentlich nur bei mehr als  $N = 2$  Dimensionen erforderlich ist und Sinn macht, beschränken wir uns hier zur Vereinfachung auf den Sonderfall zweidimensionaler Zufallsgrößen.
+
Although the description of Gaussian random variables using vectors and matrices is actually only necessary and makes sense for more than  $N = 2$  dimensions, here we restrict ourselves to the special case of two-dimensional random variables for simplicity.
  
In der Grafik ist oben die allgemeine Korrelationsmatrix  $\mathbf{K_x}$  der 2D–Zufallsgröße  $\mathbf{x} = (x_1, x_2)^{\rm T}$  angegeben, wobei  $\sigma_1^2$  und  $\sigma_2^2$  die Varianzen der Einzelkomponenten beschreiben.  $\rho$  bezeichnet den Korrelationskoeffizienten zwischen den beiden Komponenten.
+
In the graph above, the general correlation matrix  $\mathbf{K_x}$  of the 2D–random variable  $\mathbf{x} = (x_1, x_2)^{\rm T}$  is given, where  $\sigma_1^2$  and  $\sigma_2^2$  describe the variances of the individual components.   $\rho$  denotes the correlation coefficient between the two components.
  
Die Zufallsgrößen  $\mathbf{y}$  und  $\mathbf{z}$  geben zwei Spezialfälle von  $\mathbf{x}$  an, deren Prozessparameter aus den Korrelationsmatrix  $\mathbf{K_y}$  bzw.  $\mathbf{K_z}$  bestimmt werden sollen.
+
The random variables  $\mathbf{y}$  and  $\mathbf{z}$  give two special cases of  $\mathbf{x}$  whose process parameters are to be determined from the correlation matrices  $\mathbf{K_y}$  and  $\mathbf{K_z}$  respectively.
  
  
Line 19: Line 19:
  
  
''Hinweise:''
+
Hints:
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen|Verallgemeinerung auf N-dimensionale Zufallsgrößen]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables|Generalization to N-Dimensional Random Variables]].
*Einige Grundlagen zur Anwendung von Vektoren und Matrizen finden sich auf den Seiten  [[Theory_of_Stochastic_Signals/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Grundlagen_der_Matrizenrechnung:_Determinante_einer_Matrix|Determinante einer Matrix]]  sowie  [[Theory_of_Stochastic_Signals/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Grundlagen_der_Matrizenrechnung:_Inverse_einer_Matrix|Inverse einer Matrix]].
+
*Some basics on the application of vectors and matrices can be found on the pages  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Determinant_of_a_matrix|Determinant of a Matrix]]  and  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Inverse_of_a_matrix|Inverse of a Matrix]] .  
* Entsprechend der Seite  [[Theory_of_Stochastic_Signals/Zweidimensionale_Gaußsche_Zufallsgrößen#H.C3.B6henlinien_bei_korrelierten_Zufallsgr.C3.B6.C3.9Fen|Höhenlinien bei korrelierten Zufallsgrößen]]  ist der Winkel $\alpha$ zwischen dem alten und dem neuen System durch folgende Gleichung gegeben:
+
* According to the page  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables#Contour_lines_for_correlated_random_variables|Contour lines for correlated random variables]]  the angle $\alpha$ between the old and the new system is given by the following equation:
 
:$$\alpha = {1}/{2}\cdot \arctan (2 \cdot\rho \cdot
 
:$$\alpha = {1}/{2}\cdot \arctan (2 \cdot\rho \cdot
 
\frac{\sigma_1\cdot\sigma_2}{\sigma_1^2 -\sigma_2^2}).$$  
 
\frac{\sigma_1\cdot\sigma_2}{\sigma_1^2 -\sigma_2^2}).$$  
*Insbesondere ist zu beachten:  
+
*In particular, note:  
**Eine  $2×2$-Kovarianzmatrix besitzt zwei reelle Eigenwerte  $\lambda_1$  und  $\lambda_2$.  
+
**A  $2×2$-covariance matrix has two real eigenvalues  $\lambda_1$  and  $\lambda_2$.  
**Diese beiden Eigenwerte bestimmen zwei Eigenvektoren  $\xi_1$  und  $\xi_2$.  
+
**These two eigenvalues determine two eigenvectors  $\xi_1$  and  $\xi_2$.  
**Diese spannen ein neues Koordinatensystem in Richtung der Hauptachsen des alten Systems auf.
+
**These span a new coordinate system in the direction of the principal axes of the old system.
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen treffen für die Korrelationsmatrix&nbsp; $\mathbf{K_y}$&nbsp; zu?
+
{Which statements are true for the correlation matrix&nbsp; $\mathbf{K_y}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ $\mathbf{K_y}$&nbsp; beschreibt alle möglichen 2D-Zufallsgrößen mit &nbsp;$\sigma_1 = \sigma_2 = \sigma$.
+
+ $\mathbf{K_y}$&nbsp; describes all possible two-dimensional random variables with &nbsp;$\sigma_1 = \sigma_2 = \sigma$.
+ Der Wertebereich des Parameters &nbsp;$\rho$&nbsp; ist &nbsp;$-1 \le \rho \le +1$.
+
+ The value range of the parameter &nbsp;$\rho$&nbsp; is &nbsp;$-1 \le \rho \le +1$.
- Der Wertebereich des Parameters &nbsp;$\rho$&nbsp; ist &nbsp;$0 < \rho < 1$.
+
- The value range of the parameter &nbsp;$\rho$&nbsp; is &nbsp;$0 < \rho < 1$.
  
  
{Berechnen Sie die Eigenwerte von&nbsp; $\mathbf{K_y}$&nbsp; unter der Bedingung &nbsp;$\sigma = 1$&nbsp; und &nbsp;$\rho = 0$.
+
{Calculate the eigenvalues of&nbsp; $\mathbf{K_y}$&nbsp; under the condition &nbsp;$\sigma = 1$&nbsp; and &nbsp;$\rho = 0$.
 
|type="{}"}
 
|type="{}"}
 
$\lambda_1 \ = \ $ { 1 3% } $\ (\lambda_1 \ge \lambda_2)$
 
$\lambda_1 \ = \ $ { 1 3% } $\ (\lambda_1 \ge \lambda_2)$
$\lambda_2 \ = \ $ { 1 3% } $\ (\lambda_2 \le \lambda_1)$
+
$\lambda_2 \ = \ $ { 1 3% } $\ (\lambda_2 \le \lambda_1)$
  
  
{Geben Sie die Eigenwerte von&nbsp; $\mathbf{K_y}$&nbsp; unter der Bedingung &nbsp;$\sigma = 1$&nbsp; sowie &nbsp;$0 < \rho < 1$&nbsp; an.&nbsp;  Welche Werte ergeben sich für &nbsp;$\rho = 0.5 $, wobei &nbsp;$\lambda_1 \ge \lambda_2$&nbsp; vorausgesetzt wird?
+
{Give the eigenvalues of&nbsp; $\mathbf{K_y}$&nbsp; under the condition &nbsp;$\sigma = 1$&nbsp; and &nbsp;$0 < \rho < 1$&nbsp; What values result for &nbsp;$\rho = 0.5 $, assuming &nbsp;$\lambda_1 \ge \lambda_2$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\lambda_1 \ = \ $ { 1.5 3% } $\ (\lambda_1 \ge \lambda_2)$
+
$\lambda_1 \ = \ $ { 1.5 3% } $\ (\lambda_1 \ge \lambda_2)$
$\lambda_2 \ = \ $ { 0.5 3% } $\ (\lambda_2 \le \lambda_1)$
+
$\lambda_2 \ = \ $ { 0.5 3% } $\ (\lambda_2 \le \lambda_1)$
  
  
{Berechnen Sie die zugehörigen Eigenvektoren&nbsp; $\mathbf{\eta_1}$ &nbsp;und&nbsp; $\mathbf{\eta_2}$.&nbsp; Welche der folgenden Aussagen sind zutreffend?
+
{Calculate the corresponding eigenvectors&nbsp; $\mathbf{\eta_1}$ &nbsp;and&nbsp; $\mathbf{\eta_2}$.&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ $\mathbf{\eta_1}$ &nbsp;und&nbsp; $\mathbf{\eta_2}$&nbsp; liegen in Richtung der Ellipsenhauptachsen.
+
+ $\mathbf{\eta_1}$ &nbsp;and&nbsp; $\mathbf{\eta_2}$&nbsp; lie in the direction of the ellipse principal axes.
+ Die neuen Koordinaten sind  um&nbsp; $45^\circ$&nbsp; gedreht.
+
+ The new coordinates are rotated by&nbsp; $45^\circ$&nbsp;.
- Die Streuungen bezüglich des neuen Systems sind&nbsp; $\lambda_1$&nbsp; und&nbsp; $\lambda_2$.
+
- The scatterings with respect to the new system are&nbsp; $\lambda_1$&nbsp; and&nbsp; $\lambda_2$.
  
  
{Wie lauten die Kenngrößen der durch&nbsp; $\mathbf{K_z}$&nbsp; festgelegten Zufallsgröße&nbsp; $\mathbf{z}$?
+
{What are the characteristics of the random variable specified by&nbsp; $\mathbf{K_z}$&nbsp; $\mathbf{z}$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_1 = \ $ { 2 3% }
 
$\sigma_1 = \ $ { 2 3% }
Line 68: Line 68:
  
  
{Berechnen Sie die Eigenwerte&nbsp; $\lambda_1$&nbsp; und&nbsp; $\lambda_2 \le \lambda_1$&nbsp; der Korrelationsmatrix&nbsp; $\mathbf{K_z}$.
+
{Calculate the eigenvalues&nbsp; $\lambda_1$&nbsp; and&nbsp; $\lambda_2 \le \lambda_1$&nbsp; of the correlation matrix&nbsp; $\mathbf{K_z}$.
 
|type="{}"}
 
|type="{}"}
$\lambda_1 \ = \ $ { 5 3% } $\ (\lambda_1 \ge \lambda_2)$
+
$\lambda_1 \ = \ $ { 5 3% } $\ (\lambda_1 \ge \lambda_2)$
$\lambda_2 \ = \ $ { 0. } $\ (\lambda_2 \le \lambda_1)$
+
$\lambda_2 \ = \ $ { 0. } $\ (\lambda_2 \le \lambda_1)$
  
  
{Um welchen Winkel&nbsp; $\alpha$&nbsp; ist das neue Koordinatensystem&nbsp; $(\mathbf{\zeta_1}, \ \mathbf{\zeta_2})$&nbsp; gegenüber dem ursprünglichen System&nbsp; $(\mathbf{z_1}, \ \mathbf{z_2})$&nbsp; gedreht?
+
{By what angle&nbsp; $\alpha$&nbsp; is the new coordinate system&nbsp; $(\mathbf{\zeta_1}, \ \mathbf{\zeta_2})$&nbsp; rotated with respect to the original system&nbsp; $(\mathbf{z_1}, \ \mathbf{z_2})$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\alpha \ = \ $ { 26.56 3% } $\ \rm Grad$
+
$\alpha \ = \ $ { 26.56 3% } $\ \rm deg$
  
  
Line 82: Line 82:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 1 und 2</u>:
+
'''(1)'''&nbsp; Correct are <u>proposed solutions 1 and 2</u>:
*$\mathbf{K_y}$&nbsp; ist tatsächlich die allgemeinste Korrelationsmatrix einer 2D-Zufallsgröße mit&nbsp; $\sigma_1 = \sigma_2 = \sigma$.  
+
*$\mathbf{K_y}$&nbsp; is indeed the most general correlation matrix of a 2D random variable with&nbsp; $\sigma_1 = \sigma_2 = \sigma$.  
*Der Parameter&nbsp; $\rho$&nbsp; gibt den Korrelationskoeffizienten an.&nbsp; Dieser kann alle Werte zwischen&nbsp; $\pm 1$&nbsp; inclusive dieser Randwerte annehmen.
+
*The parameter&nbsp; $\rho$&nbsp; specifies the correlation coefficient.&nbsp; This can take all values between&nbsp; $\pm 1$&nbsp; including these marginal values.
 
   
 
   
  
  
'''(2)'''&nbsp; In diesem Fall lautet die Bestimmungsgleichung:
+
'''(2)'''&nbsp; In this case, the governing equation is:
 
:$${\rm det}\left[ \begin{array}{cc}
 
:$${\rm det}\left[ \begin{array}{cc}
1- \lambda & 0 \\
+
1- \lambda & 0 \
 
0 & 1- \lambda
 
0 & 1- \lambda
 
\end{array} \right] = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\end{array} \right] = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
(1- \lambda)^2 = 0\hspace{0.3cm}\Rightarrow
+
(1- \lambda)^2 = 0\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm} \hspace{0.15cm}\underline{\lambda_{1/2} =1}.$$
 
\hspace{0.3cm} \hspace{0.15cm}\underline{\lambda_{1/2} =1}.$$
  
  
  
'''(3)'''&nbsp; Bei positivem&nbsp; $\rho$&nbsp; lautet die Bestimmungsgleichung der Eigenwerte:
+
'''(3)'''&nbsp; With positive&nbsp; $\rho$&nbsp; the governing equation of the eigenvalues is:
 
:$$(1- \lambda)^2 -\rho^2 = 0\hspace{0.5cm}\Rightarrow
 
:$$(1- \lambda)^2 -\rho^2 = 0\hspace{0.5cm}\Rightarrow
 
\hspace{0.5cm}\lambda^2 - 2\lambda + 1 - \rho^2 =
 
\hspace{0.5cm}\lambda^2 - 2\lambda + 1 - \rho^2 =
 
0\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\lambda_{1/2} =1 \pm \rho.$$
 
0\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\lambda_{1/2} =1 \pm \rho.$$
  
*Für&nbsp; $\rho= 0.5$&nbsp; erhält man&nbsp; $\underline{\lambda_{1} =1.5}$&nbsp; und&nbsp; $\underline{\lambda_{2} =0.5}$.  
+
*For&nbsp; $\rho= 0.5$&nbsp; one gets&nbsp; $\underline{\lambda_{1} =1.5}$&nbsp; and&nbsp; $\underline{\lambda_{2} =0.5}$.  
*Die Gleichung gilt übrigens im gesamten Definitionsbereich&nbsp; $-1 \le \rho \le +1$.  
+
*By the way, the equation holds in the whole domain of definition&nbsp; $-1 \le \rho \le +1$.  
*Für&nbsp; $\rho = 0$&nbsp; ist&nbsp; $\lambda_1 = \lambda_2 = +1$&nbsp; &nbsp; &rArr; &nbsp; siehe Teilaufgabe&nbsp; '''(2)'''.  
+
*For&nbsp; $\rho = 0$&nbsp; is&nbsp; $\lambda_1 = \lambda_2 = +1$&nbsp; &nbsp; &rArr; &nbsp; see subtask&nbsp; '''(2)''''.  
*Für&nbsp; $\rho = \pm 1$&nbsp; ergibt sich $\lambda_1 = 2$&nbsp; und&nbsp; $\lambda_2 = 0$.
+
*For&nbsp; $\rho = \pm 1$&nbsp; this gives $\lambda_1 = 2$&nbsp; and&nbsp; $\lambda_2 = 0$.
  
  
  
'''(4)'''&nbsp; Die Eigenvektoren erhält man durch Einsetzen der Eigenwerte&nbsp; $\lambda_1$&nbsp; und&nbsp; $\lambda_2$&nbsp; in die Korrelationsmatrix:
+
'''(4)'''&nbsp; The eigenvectors are obtained by substituting the eigenvalues&nbsp; $\lambda_1$&nbsp; and&nbsp; $\lambda_2$&nbsp; into the correlation matrix:
 
:$$\left[ \begin{array}{cc}
 
:$$\left[ \begin{array}{cc}
 
1- (1+\rho) & \rho \\
 
1- (1+\rho) & \rho \\
Line 150: Line 150:
 
\end{array} \right].$$
 
\end{array} \right].$$
  
[[File:P_ID676__Sto_A_4_16_d.png|right|frame|Zur Drehung des Koordinatensystems]]
+
[[File:P_ID676__Sto_A_4_16_d.png|right|frame|To rotate the coordinate system]]
Bringt man diese in die so genannte Orthonormalform, so gilt:
+
Putting this into what is called orthonormal form, the following holds:
 
:$${\boldsymbol{\eta_1}}= \frac{1}{\sqrt{2}}\cdot \left[
 
:$${\boldsymbol{\eta_1}}= \frac{1}{\sqrt{2}}\cdot \left[
 
\begin{array}{c}
 
\begin{array}{c}
Line 163: Line 163:
 
\end{array} \right].$$
 
\end{array} \right].$$
  
In der Skizze ist das Ergebnis verdeutlicht:  
+
The sketch illustrates the result:  
*Das durch&nbsp; $\mathbf{\eta_1}$&nbsp; und&nbsp; $\mathbf{\eta_2}$&nbsp; festgelegte Koordinatensystem liegt tatsächlich in Richtung der Hauptachsen des ursprünglichen Systems.  
+
*The coordinate system defined by&nbsp; $\mathbf{\eta_1}$&nbsp; and&nbsp; $\mathbf{\eta_2}$&nbsp; is actually in the direction of the principal axes of the original system.  
*Mit&nbsp; $\sigma_1 = \sigma_2$&nbsp; ergibt sich fast immer&nbsp; $($Ausnahme: &nbsp; $\rho= 0)$&nbsp; der Drehwinkel&nbsp; $\alpha = 45^\circ$.  
+
*With&nbsp; $\sigma_1 = \sigma_2$&nbsp; almost always results&nbsp; $($exception: &nbsp; $\rho= 0)$&nbsp; the angle of rotation&nbsp; $\alpha = 45^\circ$.  
*Dies folgt auch aus der im Theorieteil angegebenen Gleichung:
+
*This also follows from the equation given in the theory section:
 
:$$\alpha = {1}/{2}\cdot \arctan (2 \cdot\rho \cdot
 
:$$\alpha = {1}/{2}\cdot \arctan (2 \cdot\rho \cdot
 
\frac{\sigma_1\cdot\sigma_2}{\sigma_1^2 -\sigma_2^2})=
 
\frac{\sigma_1\cdot\sigma_2}{\sigma_1^2 -\sigma_2^2})=
 
{1}/{2}\cdot \arctan
 
{1}/{2}\cdot \arctan
(\infty)\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\alpha = 45^\circ.$$
+
(\infty)\hspace{0.3cm}\rightarrow\hspace{0.3cm}\alpha = 45^\circ.$$
*Die Eigenwerte&nbsp; $\lambda_1$&nbsp; und&nbsp; $\lambda_2$&nbsp; kennzeichnen nicht die Streuungen bezüglich der neuen Achsen, sondern die  Varianzen.  
+
*The eigenvalues&nbsp; $\lambda_1$&nbsp; and&nbsp; $\lambda_2$&nbsp; do not denote the scatter with respect to the new axes, but the variances.  
  
  
Richtig sind also <u>die Lösungsvorschläge 1 und 2</u>.
+
Thus, correct are <u>the proposed solutions 1 and 2</u>.
  
  
'''(5)'''&nbsp; Durch Vergleich der Matrizen&nbsp; $\mathbf{K_x}$&nbsp; und&nbsp; $\mathbf{K_z}$&nbsp; erhält man
+
'''(5)'''&nbsp; By comparing the matrices&nbsp; $\mathbf{K_x}$&nbsp; and&nbsp; $\mathbf{K_z}$&nbsp; we get.
 
*$\sigma_{1}\hspace{0.15cm}\underline{ =2}$,
 
*$\sigma_{1}\hspace{0.15cm}\underline{ =2}$,
 
*$\sigma_{2}\hspace{0.15cm}\underline{ =1}$,
 
*$\sigma_{2}\hspace{0.15cm}\underline{ =1}$,
Line 184: Line 184:
  
  
'''(6)'''&nbsp; Nach dem inzwischen altbekannten Schema gilt:
+
'''(6)'''&nbsp; According to the now familiar scheme:
 
:$$(4- \lambda) \cdot (1- \lambda) -4 = 0\hspace{0.3cm}\Rightarrow
 
:$$(4- \lambda) \cdot (1- \lambda) -4 = 0\hspace{0.3cm}\Rightarrow
\hspace{0.3cm}\lambda^2 - 5\lambda =
+
\hspace{0.3cm}\lambda^2 - 5\lambda =
 
0\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\hspace{0.15cm}\underline{\lambda_{1}
 
0\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\hspace{0.15cm}\underline{\lambda_{1}
 
=5,\hspace{0.1cm} \lambda_{2} =0}.$$
 
=5,\hspace{0.1cm} \lambda_{2} =0}.$$
Line 192: Line 192:
  
  
'''(7)'''&nbsp; Nach der auf dem Angabenblatt vorgegebenen Gleichung gilt:
+
'''(7)'''&nbsp; According to the equation given on the specification sheet:
 
:$$\alpha ={1}/{2}\cdot \arctan (2 \cdot 1 \cdot \frac{2 \cdot
 
:$$\alpha ={1}/{2}\cdot \arctan (2 \cdot 1 \cdot \frac{2 \cdot
 
1}{2^2 -1^2})= {1}/{2}\cdot \arctan ({4}/{3}) =
 
1}{2^2 -1^2})= {1}/{2}\cdot \arctan ({4}/{3}) =
 
26.56^\circ.$$
 
26.56^\circ.$$
  
[[File:P_ID677__Sto_A_4_16_g.png|right|frame|Bestmögliche Dekorrelation]]
+
[[File:P_ID677__Sto_A_4_16_g.png|right|frame|Best possible decorrelation]]
Zum gleichen Ergebnis gelangt man über den Eigenvektor:
+
The same result is obtained using the eigenvector:
 
:$$\left[ \begin{array}{cc}
 
:$$\left[ \begin{array}{cc}
 
4-5 & 2 \\
 
4-5 & 2 \\
Line 212: Line 212:
 
({\zeta_{12}}/{\zeta_{11}}) = \arctan(0.5) \hspace{0.15cm}\underline{= 26.56^\circ}.$$
 
({\zeta_{12}}/{\zeta_{11}}) = \arctan(0.5) \hspace{0.15cm}\underline{= 26.56^\circ}.$$
  
Die nebenstehende Skizze zeigt die 2D-WDF der Zufallsgröße&nbsp; $\mathbf{z}$:
+
The accompanying sketch shows the joint PDF of the random variable&nbsp; $\mathbf{z}$:
* Wegen&nbsp; $\rho = 1$&nbsp; liegen alle Werte auf der Korrelationsgeraden mit den Koordinaten&nbsp; $z_1$&nbsp; und&nbsp; $z_2 = z_1/2$.  
+
*Because&nbsp; $\rho = 1$&nbsp; all values lie on the correlation line with coordinates&nbsp; $z_1$&nbsp; and&nbsp; $z_2 = z_1/2$.  
*Durch die Drehung um den Winkel&nbsp; $\alpha = \arctan(0.5) = 26.56^\circ$&nbsp; entsteht ein neues Koordinatensystem.  
+
*By rotating by the angle&nbsp; $\alpha = \arctan(0.5) = 26.56^\circ$&nbsp; a new coordinate system is formed.  
*Die Varianz entlang der Achse&nbsp; $\mathbf{\zeta_1}$ beträgt&nbsp; $\lambda_1 = 5$&nbsp; $($Streuung&nbsp; $\sigma_1 = \sqrt{5} = 2.236)$,  
+
*The variance along the axis&nbsp; $\mathbf{\zeta_1}$ is&nbsp; $\lambda_1 = 5$&nbsp; $($scatter&nbsp; $\sigma_1 = \sqrt{5} = 2.236)$,  
*während in der dazu orthogonalen Richtung&nbsp; $\mathbf{\zeta_2}$&nbsp; die Zufallsgröße nicht ausgedehnt ist&nbsp; $(\lambda_2 = \sigma_2 = 0)$.
+
*while in the direction orthogonal to it&nbsp; $\mathbf{\zeta_2}$&nbsp; the random variable is not extended&nbsp; $(\lambda_2 = \sigma_2 = 0)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 12:29, 15 March 2022

Three correlation matrices

Although the description of Gaussian random variables using vectors and matrices is actually only necessary and makes sense for more than  $N = 2$  dimensions, here we restrict ourselves to the special case of two-dimensional random variables for simplicity.

In the graph above, the general correlation matrix  $\mathbf{K_x}$  of the 2D–random variable  $\mathbf{x} = (x_1, x_2)^{\rm T}$  is given, where  $\sigma_1^2$  and  $\sigma_2^2$  describe the variances of the individual components.   $\rho$  denotes the correlation coefficient between the two components.

The random variables  $\mathbf{y}$  and  $\mathbf{z}$  give two special cases of  $\mathbf{x}$  whose process parameters are to be determined from the correlation matrices  $\mathbf{K_y}$  and  $\mathbf{K_z}$  respectively.






Hints:

$$\alpha = {1}/{2}\cdot \arctan (2 \cdot\rho \cdot \frac{\sigma_1\cdot\sigma_2}{\sigma_1^2 -\sigma_2^2}).$$
  • In particular, note:
    • A  $2×2$-covariance matrix has two real eigenvalues  $\lambda_1$  and  $\lambda_2$.
    • These two eigenvalues determine two eigenvectors  $\xi_1$  and  $\xi_2$.
    • These span a new coordinate system in the direction of the principal axes of the old system.


Questions

1

Which statements are true for the correlation matrix  $\mathbf{K_y}$ ?

$\mathbf{K_y}$  describes all possible two-dimensional random variables with  $\sigma_1 = \sigma_2 = \sigma$.
The value range of the parameter  $\rho$  is  $-1 \le \rho \le +1$.
The value range of the parameter  $\rho$  is  $0 < \rho < 1$.

2

Calculate the eigenvalues of  $\mathbf{K_y}$  under the condition  $\sigma = 1$  and  $\rho = 0$.

$\lambda_1 \ = \ $

$\ (\lambda_1 \ge \lambda_2)$
$\lambda_2 \ = \ $

$\ (\lambda_2 \le \lambda_1)$

3

Give the eigenvalues of  $\mathbf{K_y}$  under the condition  $\sigma = 1$  and  $0 < \rho < 1$  What values result for  $\rho = 0.5 $, assuming  $\lambda_1 \ge \lambda_2$ ?

$\lambda_1 \ = \ $

$\ (\lambda_1 \ge \lambda_2)$
$\lambda_2 \ = \ $

$\ (\lambda_2 \le \lambda_1)$

4

Calculate the corresponding eigenvectors  $\mathbf{\eta_1}$  and  $\mathbf{\eta_2}$.  Which of the following statements are true?

$\mathbf{\eta_1}$  and  $\mathbf{\eta_2}$  lie in the direction of the ellipse principal axes.
The new coordinates are rotated by  $45^\circ$ .
The scatterings with respect to the new system are  $\lambda_1$  and  $\lambda_2$.

5

What are the characteristics of the random variable specified by  $\mathbf{K_z}$  $\mathbf{z}$?

$\sigma_1 = \ $

$\sigma_2 = \ $

$\rho = \ $

6

Calculate the eigenvalues  $\lambda_1$  and  $\lambda_2 \le \lambda_1$  of the correlation matrix  $\mathbf{K_z}$.

$\lambda_1 \ = \ $

$\ (\lambda_1 \ge \lambda_2)$
$\lambda_2 \ = \ $

$\ (\lambda_2 \le \lambda_1)$

7

By what angle  $\alpha$  is the new coordinate system  $(\mathbf{\zeta_1}, \ \mathbf{\zeta_2})$  rotated with respect to the original system  $(\mathbf{z_1}, \ \mathbf{z_2})$ ?

$\alpha \ = \ $

$\ \rm deg$


Solution

(1)  Correct are proposed solutions 1 and 2:

  • $\mathbf{K_y}$  is indeed the most general correlation matrix of a 2D random variable with  $\sigma_1 = \sigma_2 = \sigma$.
  • The parameter  $\rho$  specifies the correlation coefficient.  This can take all values between  $\pm 1$  including these marginal values.


(2)  In this case, the governing equation is:

$${\rm det}\left[ \begin{array}{cc} 1- \lambda & 0 \ 0 & 1- \lambda \end{array} \right] = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} (1- \lambda)^2 = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{\lambda_{1/2} =1}.$$


(3)  With positive  $\rho$  the governing equation of the eigenvalues is:

$$(1- \lambda)^2 -\rho^2 = 0\hspace{0.5cm}\Rightarrow \hspace{0.5cm}\lambda^2 - 2\lambda + 1 - \rho^2 = 0\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\lambda_{1/2} =1 \pm \rho.$$
  • For  $\rho= 0.5$  one gets  $\underline{\lambda_{1} =1.5}$  and  $\underline{\lambda_{2} =0.5}$.
  • By the way, the equation holds in the whole domain of definition  $-1 \le \rho \le +1$.
  • For  $\rho = 0$  is  $\lambda_1 = \lambda_2 = +1$    ⇒   see subtask  (2)'.
  • For  $\rho = \pm 1$  this gives $\lambda_1 = 2$  and  $\lambda_2 = 0$.


(4)  The eigenvectors are obtained by substituting the eigenvalues  $\lambda_1$  and  $\lambda_2$  into the correlation matrix:

$$\left[ \begin{array}{cc} 1- (1+\rho) & \rho \\ \rho & 1- (1+\rho) \end{array} \right]\cdot{\boldsymbol{\eta_1}} = \left[ \begin{array}{cc} -\rho & \rho \\ \rho & -\rho \end{array} \right]\cdot \left[ \begin{array}{c} \eta_{11} \\ \eta_{12} \end{array} \right]=0$$
$$\Rightarrow\hspace{0.3cm}-\rho \cdot \eta_{11} + \rho \cdot \eta_{12} = 0\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\eta_{11}= {\rm const} \cdot \eta_{12}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}{\boldsymbol{\eta_1}}= {\rm const}\cdot \left[ \begin{array}{c} 1 \\ 1 \end{array} \right];$$
$$\left[ \begin{array}{cc} 1- (1-\rho) & \rho \\ \rho & 1- (1-\rho) \end{array} \right]\cdot{\boldsymbol{\eta_2}} = \left[ \begin{array}{cc} \rho & \rho \\ \rho & \rho \end{array} \right]\cdot \left[ \begin{array}{c} \eta_{21} \\ \eta_{22} \end{array} \right]=0$$
$$\Rightarrow\hspace{0.3cm}\rho \cdot \eta_{21} + \rho \cdot \eta_{22} = 0\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\eta_{21}= -{\rm const} \cdot \eta_{22}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}{\boldsymbol{\eta_2}}= {\rm const}\cdot \left[ \begin{array}{c} -1 \\ 1 \end{array} \right].$$
To rotate the coordinate system

Putting this into what is called orthonormal form, the following holds:

$${\boldsymbol{\eta_1}}= \frac{1}{\sqrt{2}}\cdot \left[ \begin{array}{c} 1 \\ 1 \end{array} \right],\hspace{0.5cm} {\boldsymbol{\eta_2}}= \frac{1}{\sqrt{2}}\cdot \left[ \begin{array}{c} -1 \\ 1 \end{array} \right].$$

The sketch illustrates the result:

  • The coordinate system defined by  $\mathbf{\eta_1}$  and  $\mathbf{\eta_2}$  is actually in the direction of the principal axes of the original system.
  • With  $\sigma_1 = \sigma_2$  almost always results  $($exception:   $\rho= 0)$  the angle of rotation  $\alpha = 45^\circ$.
  • This also follows from the equation given in the theory section:
$$\alpha = {1}/{2}\cdot \arctan (2 \cdot\rho \cdot \frac{\sigma_1\cdot\sigma_2}{\sigma_1^2 -\sigma_2^2})= {1}/{2}\cdot \arctan (\infty)\hspace{0.3cm}\rightarrow\hspace{0.3cm}\alpha = 45^\circ.$$
  • The eigenvalues  $\lambda_1$  and  $\lambda_2$  do not denote the scatter with respect to the new axes, but the variances.


Thus, correct are the proposed solutions 1 and 2.


(5)  By comparing the matrices  $\mathbf{K_x}$  and  $\mathbf{K_z}$  we get.

  • $\sigma_{1}\hspace{0.15cm}\underline{ =2}$,
  • $\sigma_{2}\hspace{0.15cm}\underline{ =1}$,
  • $\rho = 2/(\sigma_{1} \cdot \sigma_{2})\hspace{0.15cm}\underline{ =1}$.


(6)  According to the now familiar scheme:

$$(4- \lambda) \cdot (1- \lambda) -4 = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\lambda^2 - 5\lambda = 0\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\hspace{0.15cm}\underline{\lambda_{1} =5,\hspace{0.1cm} \lambda_{2} =0}.$$


(7)  According to the equation given on the specification sheet:

$$\alpha ={1}/{2}\cdot \arctan (2 \cdot 1 \cdot \frac{2 \cdot 1}{2^2 -1^2})= {1}/{2}\cdot \arctan ({4}/{3}) = 26.56^\circ.$$
Best possible decorrelation

The same result is obtained using the eigenvector:

$$\left[ \begin{array}{cc} 4-5 & 2 \\ 2 & 1-5 \end{array} \right]\cdot \left[ \begin{array}{c} \zeta_{11} \\ \zeta_{12} \end{array} \right]=0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}-\zeta_{11}= 2\zeta_{12}=0\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\zeta_{12}={\zeta_{11}}/{2}$$
$$\Rightarrow\hspace{0.3cm}\alpha = \arctan ({\zeta_{12}}/{\zeta_{11}}) = \arctan(0.5) \hspace{0.15cm}\underline{= 26.56^\circ}.$$

The accompanying sketch shows the joint PDF of the random variable  $\mathbf{z}$:

  • Because  $\rho = 1$  all values lie on the correlation line with coordinates  $z_1$  and  $z_2 = z_1/2$.
  • By rotating by the angle  $\alpha = \arctan(0.5) = 26.56^\circ$  a new coordinate system is formed.
  • The variance along the axis  $\mathbf{\zeta_1}$ is  $\lambda_1 = 5$  $($scatter  $\sigma_1 = \sqrt{5} = 2.236)$,
  • while in the direction orthogonal to it  $\mathbf{\zeta_2}$  the random variable is not extended  $(\lambda_2 = \sigma_2 = 0)$.