Difference between revisions of "Aufgaben:Exercise 3.5Z: Phase Modulation of a Trapezoidal Signal"
m |
m |
||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1100__Mod_Z_3_5.png|right|frame| | + | [[File:P_ID1100__Mod_Z_3_5.png|right|frame|Trapezoidal and rectangular signals]] |
A phase modulator with input signal q1(t) a modulated signal s(t) at the output are described as follows: | A phase modulator with input signal q1(t) a modulated signal s(t) at the output are described as follows: | ||
:$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\psi(t) \big ]= | :$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\psi(t) \big ]= |
Revision as of 14:57, 17 March 2022
A phase modulator with input signal q1(t) a modulated signal s(t) at the output are described as follows:
- s(t)=AT⋅cos[ψ(t)]=AT⋅cos[ωT⋅t+KPM⋅q1(t)].
- The carrier angular frequency is ω_{\rm T} = 2π · 10^5 \cdot {1}/{\rm s}.
- The instantaneous angular frequency ω_{\rm A}(t) is equal to the derivative of the angle function ψ(t) with respect to time.
- The instantaneous frequency is thus f_{\rm A}(t) = ω_{\rm A}(t)/2π.
The trapezoidal signal q_1(t) is applied as a test signal, where the nominated time duration is T = 10 \ \rm µ s .
The same modulated signal s(t) would result from a frequency modulator with the angular function
- \psi(t) = \omega_{\rm T} \cdot t + K_{\rm FM} \cdot \int q_2(t)\hspace{0.15cm}{\rm d}t
if the rectangular source signal q_2(t) is applied according to the lower plot.
Hints:
- This exercise belongs to the chapter Frequency Modulation.
- Reference is also made to the chapter Phase Modulation.
Questions
Solution
- \phi_{\rm max} = K_{\rm PM} \cdot 2\,{\rm V} = 3\,{\rm rad}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm PM} \hspace{0.15cm}\underline {= 1.5\,{\rm V^{-1}}} \hspace{0.05cm}.
(2) In the range 0 < t < T , the angular function can be represented as follows:
- \psi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot 2\,{\rm V} \cdot {t}/{T}\hspace{0.05cm}.
- The instantaneous angular frequency ω_{\rm A}(t) or the instantaneous frequency f_{\rm A}(t) the following holds:
- \omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm PM} \cdot \frac{2\,{\rm V}}{10\,{\rm µ s}}\hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T} + \frac{1.5\,{\rm V}^{-1}}{2 \pi} \cdot 2 \cdot 10^5 \rm {V}/{ s} = 100\,{\rm kHz}+ 47.7\,{\rm kHz}= 147.7\,{\rm kHz}\hspace{0.05cm}.
- The instantaneous frequency is constant, sonbsp; f_\text{A, min} = f_\text{A, max}\hspace{0.15cm}\underline{ = 147.7 \ \rm kHz} holds.
(3) Due to the constant source signal, the derivative is zero throughout the time interval T < t < 3T under consideration, so the instantaneous frequency is equal to the carrier frequency:
- f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} \hspace{0.15cm}\underline {= 100\,{\rm kHz}}\hspace{0.05cm}.
(4) The linear decay of q_1(t) in the time interval 3T < t < 5T with slope as calculated in (2) leads to the result:
- f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} - 47.7\,{\rm kHz} \hspace{0.15cm}\underline {= 52.3\,{\rm kHz}}\hspace{0.05cm}.
(5) By differentiation, we arrive at the instantaneous angular frequency:
- \omega_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot q_2(t) \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T}+\frac{ K_{\rm FM}}{2 \pi} \cdot q_2(t)\hspace{0.05cm}.
- Using the result from (2) , we get:
- \frac{ K_{\rm FM}}{2 \pi} \cdot 2\,{\rm V} = \frac{ 3 \cdot 10^5}{2 \pi} \cdot {\rm s^{-1}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm FM} \hspace{0.15cm}\underline {= 1.5 \cdot 10^5 \hspace{0.15cm}{\rm V^{-1}}{\rm s^{-1}}}\hspace{0.05cm}.