Difference between revisions of "Aufgaben:Exercise 1.10Z: Gaussian Band-Pass"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1697__Dig_Z_4_3.png|right|frame|Gaussian bandpass channel]]
+
[[File:P_ID1697__Dig_Z_4_3.png|right|frame|Gaussian band-pass channel]]
 
For this exercise we assume:
 
For this exercise we assume:
*Binary phase modulation (BPSK) is used for modulation.
+
*Binary phase modulation  $\rm (BPSK)$  is used for modulation.
*Demodulation is frequency and phase synchronous.  
+
*Demodulation is synchronous in frequency and phase.  
  
  
For carrier frequency modulated transmission, the channel frequency response  $H_{\rm K}(f)$  must always be assumed to be a bandpass. The channel parameters are, for example, the center frequency  $f_{\rm M}$  and the bandwidth  $\Delta f_{\rm K}$, where the center frequency  $f_{\rm M}$  often coincides with the carrier frequency  $f_{\rm T}$.    
+
For carrier frequency modulated transmission,  the channel frequency response  $H_{\rm K}(f)$  must always be assumed to be a band-pass.  The channel parameters are  e.g.  the center frequency  $f_{\rm M}$  and the bandwidth  $\Delta f_{\rm K}$,  where the center frequency  (German:  "Mittenfrequenz"   ⇒   subscipt:  "M")  $f_{\rm M}$  often coincides with the carrier frequency  (German:  "Trägerfrequenz"   ⇒   subscipt:  "T")  $f_{\rm T}$.    
  
In this exercise, in particular, we will assume a Gaussian bandpass according to the diagram. For its frequency response holds:
+
In this exercise we will assume a Gaussian band-pass according to the diagram.  For its frequency response holds:
 
:$$H_{\rm K}(f) = {\rm exp} \left [ - \pi \cdot \left ( \frac {f - f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]
 
:$$H_{\rm K}(f) = {\rm exp} \left [ - \pi \cdot \left ( \frac {f - f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]
 
  +{\rm exp} \left [ - \pi \cdot \left ( \frac {f + f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]$$
 
  +{\rm exp} \left [ - \pi \cdot \left ( \frac {f + f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]$$
  
For a simpler description, one often uses the equivalent TP frequency response  $H_{\rm K,TP}(f)$. This results from  $H_{\rm K}(f)$  by
+
For a simpler description,  one often uses the equivalent low-pass  ("TP")  frequency response  $H_{\rm K,TP}(f)$.  This results from  $H_{\rm K}(f)$  by
 
*truncating the components at negative frequencies,
 
*truncating the components at negative frequencies,
 +
 
*shifting the spectrum by  $f_{\rm T}$  to the left.
 
*shifting the spectrum by  $f_{\rm T}$  to the left.
  
  
In the considered example with  $f_{\rm T} = f_{\rm M}$  for the equivalent TP frequency response results:
+
In the considered example with  $f_{\rm T} = f_{\rm M}$  for the equivalent low-pass frequency response results:
 
:$$ H_{\rm K,\hspace{0.04cm} TP}(f) = {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {f }/{\Delta f_{\rm K}}\right )^2 }.$$
 
:$$ H_{\rm K,\hspace{0.04cm} TP}(f) = {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {f }/{\Delta f_{\rm K}}\right )^2 }.$$
The corresponding time function (Fourier inverse transform) is:
+
The corresponding time function  ("inverse Fourier transform")  is:
 
:$$ h_{\rm K,\hspace{0.04cm} TP}(t) = \Delta f_{\rm K} \cdot {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {\Delta f_{\rm K}} \cdot t \right )^2 }.$$
 
:$$ h_{\rm K,\hspace{0.04cm} TP}(t) = \Delta f_{\rm K} \cdot {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {\Delta f_{\rm K}} \cdot t \right )^2 }.$$
However, the frequency response is also suitable for describing a phase-synchronous BPSK system in the low-pass range
+
However,  the frequency response is also suitable for describing a phase-synchronous BPSK system in the low-pass range
 
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] ,$$
 
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] ,$$
where "MKD" stands for modulator – channel (Kanal) – demodulator. Often - but not always -  $H_{\rm MKD}(f)$  and  $H_{\rm K,TP}(f)$  are identical.
+
where  "MKD"  stands for  "modulator – channel (Kanal) – demodulator".  Often - but not always -  $H_{\rm MKD}(f)$  and  $H_{\rm K,TP}(f)$  are identical.
  
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]].
  
''Notes:''
+
*Reference is made in particular to the section  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Baseband_model_for_ASK_and_BPSK|"Baseband model for ASK and BPSK"]].  
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|Linear Digital Modulation - Coherent Demodulation]].
 
*Reference is made in particular to the section  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Baseband_model_for_ASK_and_BPSK|Baseband model for ASK and BPSK]].  
 
 
   
 
   
  
Line 42: Line 43:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Give the impulse response &nbsp;$h_{\rm K}(t)$&nbsp; of the Gaussian bandpass channel. What is the (normalized) value for time &nbsp;$t = 0$?
+
{Give the impulse response &nbsp;$h_{\rm K}(t)$&nbsp; of the Gaussian band-pass channel.&nbsp; What is the&nbsp; (normalized)&nbsp; value for time &nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$ h_{\rm K}(t)/\Delta f_{\rm K} \  =  \ $ { 2 3% }
 
$ h_{\rm K}(t)/\Delta f_{\rm K} \  =  \ $ { 2 3% }
Line 54: Line 55:
 
+The time function &nbsp;$h_{\rm MKD}(t)$&nbsp; is real.
 
+The time function &nbsp;$h_{\rm MKD}(t)$&nbsp; is real.
  
{Which statements are true under the condition $f_{\rm T} \neq f_{\rm M}$?
+
{Which statements are true under the condition&nbsp; $f_{\rm T} \neq f_{\rm M}$?
 
|type="[]"}
 
|type="[]"}
 
-$H_{\rm K,TP}(f)$&nbsp; and &nbsp;$H_{\rm MKD}(f)$&nbsp; coincide completely.
 
-$H_{\rm K,TP}(f)$&nbsp; and &nbsp;$H_{\rm MKD}(f)$&nbsp; coincide completely.

Revision as of 15:00, 7 May 2022

Gaussian band-pass channel

For this exercise we assume:

  • Binary phase modulation  $\rm (BPSK)$  is used for modulation.
  • Demodulation is synchronous in frequency and phase.


For carrier frequency modulated transmission,  the channel frequency response  $H_{\rm K}(f)$  must always be assumed to be a band-pass.  The channel parameters are  e.g.  the center frequency  $f_{\rm M}$  and the bandwidth  $\Delta f_{\rm K}$,  where the center frequency  (German:  "Mittenfrequenz"   ⇒   subscipt:  "M")  $f_{\rm M}$  often coincides with the carrier frequency  (German:  "Trägerfrequenz"   ⇒   subscipt:  "T")  $f_{\rm T}$. 

In this exercise we will assume a Gaussian band-pass according to the diagram.  For its frequency response holds:

$$H_{\rm K}(f) = {\rm exp} \left [ - \pi \cdot \left ( \frac {f - f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ] +{\rm exp} \left [ - \pi \cdot \left ( \frac {f + f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]$$

For a simpler description,  one often uses the equivalent low-pass  ("TP")  frequency response  $H_{\rm K,TP}(f)$.  This results from  $H_{\rm K}(f)$  by

  • truncating the components at negative frequencies,
  • shifting the spectrum by  $f_{\rm T}$  to the left.


In the considered example with  $f_{\rm T} = f_{\rm M}$  for the equivalent low-pass frequency response results:

$$ H_{\rm K,\hspace{0.04cm} TP}(f) = {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {f }/{\Delta f_{\rm K}}\right )^2 }.$$

The corresponding time function  ("inverse Fourier transform")  is:

$$ h_{\rm K,\hspace{0.04cm} TP}(t) = \Delta f_{\rm K} \cdot {\rm e}^ { - \pi \hspace{0.04cm}\cdot \hspace{0.04cm}\left ( {\Delta f_{\rm K}} \cdot t \right )^2 }.$$

However,  the frequency response is also suitable for describing a phase-synchronous BPSK system in the low-pass range

$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] ,$$

where  "MKD"  stands for  "modulator – channel (Kanal) – demodulator".  Often - but not always -  $H_{\rm MKD}(f)$  and  $H_{\rm K,TP}(f)$  are identical.



Notes:


Questions

1

Give the impulse response  $h_{\rm K}(t)$  of the Gaussian band-pass channel.  What is the  (normalized)  value for time  $t = 0$?

$ h_{\rm K}(t)/\Delta f_{\rm K} \ = \ $

2

Which statements are valid under the condition  $f_{\rm T} = f_{\rm M}$?

$H_{\rm K,TP}(f)$  and  $H_{\rm MKD}(f)$  coincide completely.
$H_{\rm K,TP}(f)$  and  $H_{\rm MKD}(f)$  are the same for low frequencies.
The time function  $h_{\rm K,TP}(t)$  is real.
The time function  $h_{\rm MKD}(t)$  is real.

3

Which statements are true under the condition  $f_{\rm T} \neq f_{\rm M}$?

$H_{\rm K,TP}(f)$  and  $H_{\rm MKD}(f)$  coincide completely.
$H_{\rm K,TP}(f)$  and  $H_{\rm MKD}(f)$  are the same for low frequencies.
The time function  $h_{\rm K,TP}(t)$  is real.
The time function  $h_{\rm MKD}(t)$  is real.

4

What should be true with respect to a smaller bit error probability?

$f_{\rm M} = f_{\rm T}$,
$f_{\rm M} \neq f_{\rm T}$.


Solution

(1)  For the bandpass frequency response $H_{\rm K}(f)$ we can write:

$$H_{\rm K}(f) = H_{\rm K,\hspace{0.04cm} TP}(f) \star \big [ \delta (f - f_{\rm M}) + \delta (f + f_{\rm M}) \big ] .$$
  • The Fourier inverse transform of the bracket expression yields a cosine function of frequency $f_{\rm M}$ with amplitude $2$.
  • Thus, according to the convolution theorem:
$$h_{\rm K}(t) = 2 \cdot \Delta f_{\rm K} \cdot {\rm exp} \left [ - \pi \cdot \left ( {\Delta f_{\rm K}} \cdot t \right )^2 \right ] \cdot \cos(2 \pi f_{\rm M} t ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm K}(t = 0)/\Delta f_{\rm K} \hspace{0.1cm}\underline {= 2}.$$
  • This means: The TP impulse response $h_{\rm K,\hspace{0.04cm}TP}(t)$ is identical in shape to the envelope of the bp impulse response $h_{\rm K}(t)$, but twice as large.


(2)  Statements 2, 3 and 4 are correct:

  • The first statement is false because $H_{\rm MKD}(f)$ also has components around $\pm 2f_{\rm T}$.
  • The time function $h_{\rm K,\hspace{0.04cm}TP}(t)$ is real according to the given equation.
  • The same is true for $h_{\rm MKD}(t)$ also considering the $\pm 2f_{\rm T}$ components, since $H_{\rm MKD}(f)$ is an even function with respect to $f = 0$.
  • The diagram shows $H_{\rm MKD}(f)$, which also has components around $\pm 2f_{\rm T}$. At low frequencies, $H_{\rm K,\hspace{0.04cm}TP}(f)$ is identical to $H_{\rm MKD}(f)$.


Resulting baseband frequency response for $f_{\rm M} = f_{\rm T}$

(3)  Only solution 4 is correct:

  • Here $H_{\rm K,\hspace{0.04cm}TP}(f)$ and $H_{\rm MKD}(f)$ differ even at the low frequencies.
  • $H_{\rm K,\hspace{0.04cm}TP}(f)$ is a Gaussian function with the maximum at $f_{ε} = f_{\rm M} - f_{\rm T}$.
  • Because of this asymmetry, $h_{\rm K,\hspace{0.04cm}TP}(t)$ is complex.
  • In contrast, $H_{\rm MKD}(f)$ is still an even function with respect to $f = 0$ with real impulse response $h_{\rm MKD}(t)$.
  • $H_{\rm MKD}(f)$ is composed of two Gaussian functions at $± f_ε$.


Resulting baseband frequency response for $f_{\rm M} \ne f_{\rm T}$

(4)  Correct is of course the first answer.