Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.3: Sum of two Oscillations"

From LNTwww
m
Line 88: Line 88:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; The <u>third answer</u> is correct:
 
'''(1)'''&nbsp; The <u>third answer</u> is correct:
*In angle modulation, the complex pointer &nbsp; sTP(t)&nbsp; always moves on a circular arc the following opening angle:
+
*In angle modulation, the complex pointer &nbsp; sTP(t)&nbsp; always moves on a circular arc with the following opening angle:
 
:2·KPM·qmax=21/V1.45 V=2.9 rad166.
 
:2·KPM·qmax=21/V1.45 V=2.9 rad166.
 
*Using the (admittedly very rough) approximation&nbsp; 166180&nbsp; we indeed get a semicircle.  
 
*Using the (admittedly very rough) approximation&nbsp; 166180&nbsp; we indeed get a semicircle.  

Revision as of 17:00, 9 April 2022

Two different Bessel spectra

The equivalent low-pass signal with phase modulation, when normalized to the carrier amplitude (AT=1) is: 

sTP(t)=ejKPMq(t),

The modulator constant is assumed to be  KPM=1/V  throughout the task.


The upper graph shows the corresponding spectral function  B1(f), when the source signal is

q1(t)=0.9Vsin(2π1kHzt)

The weights of the Bessel-Dirac lines when  η_1 = 0.9  are obtained as follows:

{\rm J}_0 (0.9) = 0.808 \approx 0.8,\hspace{1cm} {\rm J}_1 (0.9) = 0.406 \approx 0.4,
{\rm J}_2 (0.9) = 0.095 \approx 0.1,\hspace{1cm} {\rm J}_3 (0.9) \approx {\rm J}_4 (0.9) \approx\ \text{ ...} \ \approx 0 \hspace{0.05cm}.

Use the approximations given in the graph to simplify the calculations.

The Bessel function  B_2(f)  is obtained for the source signal

q_2(t) = 0.65\,{\rm V} \cdot \cos(2 \pi \cdot 3\,{\rm kHz} \cdot t)

The numerical values of the Dirac lines are obtained from the following:

{\rm J}_0 (0.65) = 0.897 \approx 0.9,\hspace{0.3cm}{\rm J}_1 (0.65) = 0.308 \approx 0.3, \hspace{0.3cm}{\rm J}_2 (0.65) = 0.051 \approx 0\hspace{0.05cm}.

From the graph, it can be seen that due to the cosine source signal  q_2(t)  and the cosine carrier signal z(t) , the spectral lines at ±3 \ \rm kHz  are both positive and imaginary.

In the context of this task, we will now investigate the case where the source signal

q(t) = q_1(t) + q_2(t)

is applied to the input of the phase modulator.

  • It is worth mentioning that  |q(t)| < q_{\rm max} = 1.45 \ \rm V .
  • This maximum value is slightly smaller than the sum  A_1 + A_2 of the individual amplitudes when a sine and a cosine function with the given amplitudes are added up.


In the following questionnaire,

  • S_{\rm TP}(f)  denotes the spectral function of the equivalent low-pass signal,
  • S_+(f)  denotes the spectral functions of the analytic signal,


in both cases assuming that  q(t) = q_1(t) + q_2(t)  holds and that the carrier frequency is f_{\rm T} = 100 \ \rm kHz .





Hints:


Questions

1

Let  q(t) = q_1(t)+q_2(t).  Which geometric figure describes the given locus curve s_{\rm TP}(t)?

The locus curve is an ellipse.
The locus curve is a circle.
The locus curve is approximately a semi-circle.
The locus curve is an arc, with an approximate opening angle of  90^\circ.

2

Calculate the spectral function S_{\rm TP}(f).  Between what frequencies  f_{\rm min}  and  f_{\rm max}  do the spectral lines lie?

f_{\rm min} \ = \

\ \rm kHz
f_{\rm max} \ = \

\ \rm kHz

3

Calculate the weight of the Dirac function at  f = 0.

{\rm Re}\big[S_{\rm TP}(f = 0)\big] \ = \

{\rm Im}\big[S_{\rm TP}(f = 0)\big] \ = \

4

Calculate the weight of the Dirac function at  f = 1\ \rm kHz.

{\rm Re}\big[S_{\rm TP}(f = 1 \ \rm kHz)\big] \ = \

{\rm Im}\big[S_{\rm TP}(f = 1 \ \rm kHz)\big] \ = \

5

Calculate the weight of the  S_+(f)–Dirac function at  f = 98 \ \rm kHz.

{\rm Re}\big[S_{\rm +}(f = 98 \ \rm kHz)\big] \ = \

{\rm Im}\big[S_{\rm +}(f = 98 \ \rm kHz)\big] \ = \


Solution

(1)  The third answer is correct:

  • In angle modulation, the complex pointer   s_{\rm TP}(t)  always moves on a circular arc with the following opening angle:
2 · K_{\rm PM} · q_{\rm max} = 2 \cdot {\rm 1/V} \cdot 1.45 \ \rm V = 2.9 \ \rm rad \approx 166^\circ.
  • Using the (admittedly very rough) approximation  166^\circ \approx 180^\circ  we indeed get a semicircle.


(2)  In general,   S_{\rm TP}(f) = B_1(f) ∗ B_2(f) holds.

  • Since  B_1(f)  is limited to the frequencies   |f| ≤ 2 \ \rm kHz  and  B_2(f)  is limited to the range   ±3 \ \rm kHz , the convolution product is limited to  |f| ≤ 5 \ \rm kHz .
  • It follows that:
f_{\rm min} \hspace{0.15cm}\underline {= -5 \ \rm kHz},
f_{\rm max} \hspace{0.15cm}\underline {=+5 \ \rm kHz}.


(3)  The convolution product for frequency   f = 0  results from multiplying  B_1(f)  with  B_2(f)  and summing.

  • Only for   f = 0  are both  B_1(f)  and  B_2(f)  non-zero.
  • Thus, we get:
S_{\rm TP}(f = 0) = B_{1}(f = 0) \cdot B_{2}(f = 0)= 0.8 \cdot 0.9 \hspace{0.15cm}\underline {= 0.72}\hspace{0.2cm}{\rm (rein \hspace{0.15cm} reell)} \hspace{0.05cm}.


(4)  Now, before multiplication and summationm there needs to be a frequency shift of   B_2(f)  to the right – or of  B_1(f)  to the left– by   1 \ \rm kHz  erfolgen.  This gives:

S_{\rm TP}(f = 1\,{\rm kHz}) = B_{1}(f = -2\,{\rm kHz}) \cdot B_{2}(f = 3\,{\rm kHz}) + B_{1}(f = 1\,{\rm kHz}) \cdot B_{2}(f = 0) = 0.1 \cdot {\rm j} \cdot 0.3 + 0.4 \cdot 0.9\hspace{0.15cm} = 0.36 + {\rm j} \cdot 0.03
\Rightarrow \hspace{0.3cm} {\rm Re}[S_{\rm TP}(f = 1\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.36} \hspace{0.05cm},\hspace{0.3cm} {\rm Im}[S_{\rm TP}(f = 1\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.03} \hspace{0.05cm}.


(5)  The Dirac line  S_+(f = 98 \ \rm kHz)  corresponds to the   S_{\rm TP}(f)–line at  f = -2 \ \rm kHz.  This is

S_{\rm TP}(f \hspace{-0.05cm}=\hspace{-0.05cm} -2\,{\rm kHz}) \hspace{-0.03cm}=\hspace{-0.03cm} B_{1}(f = -2\,{\rm kHz}) \cdot B_{2}(f \hspace{-0.05cm}=\hspace{-0.05cm} 0) + B_{1}(f \hspace{-0.05cm}=\hspace{-0.05cm} 1\,{\rm kHz}) \cdot B_{2}(f \hspace{-0.05cm}=\hspace{-0.05cm} -3\,{\rm kHz})= 0.1 \cdot 0.9 + 0.4 \cdot {\rm j} \cdot 0.3 \hspace{0.15cm}\hspace{-0.03cm}=\hspace{-0.03cm} 0.09 + {\rm j} \cdot 0.12
\Rightarrow \hspace{0.3cm} {\rm Re}[S_{\rm +}(f = 98\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.09} \hspace{0.05cm}, \hspace{0.3cm} {\rm Im}[S_{\rm +}(f = 98\,{\rm kHz})] \hspace{0.15cm}\underline {= 0.12} \hspace{0.05cm}.