Difference between revisions of "Aufgaben:Exercise 3.7: Optimal Nyquist Equalization once again"

From LNTwww
Line 41: Line 41:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel  [[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]].
+
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]].
 
   
 
   
* Zur Bestimmung der Fehlerwahrscheinlichkeit können Sie das interaktive Berechnungsmodul  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]]  benutzen.
+
* To determine the error probability you can use the interactive calculation module  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Betrag des Sender&ndash;Kanal&ndash;Frequenzgangs für die Frequenzen &nbsp;$f = 0$, &nbsp;$f  = 1/(2T)= f_{\rm Nyq}$&nbsp; und&nbsp; $f = 1/T =  2 \cdot f_{\rm Nyq}$.
+
{Calculate the magnitude of the transmitter channel frequency response for the frequencies &nbsp;$f = 0$, &nbsp;$f  = 1/(2T)= f_{\rm Nyq}$&nbsp; and&nbsp; $f = 1/T =  2 \cdot f_{\rm Nyq}$.
 
|type="{}"}
 
|type="{}"}
 
$|H_{\rm SK} (f = 0)| \hspace{0.8cm} = \ $ { 1 3% }  
 
$|H_{\rm SK} (f = 0)| \hspace{0.8cm} = \ $ { 1 3% }  
Line 56: Line 56:
 
$|H_{\rm SK} (f = 1/T)| \hspace{0.25cm} = \ $ { 0. }
 
$|H_{\rm SK} (f = 1/T)| \hspace{0.25cm} = \ $ { 0. }
  
{Berechnen Sie den Maximalwert von &nbsp;$H_{\rm TF}(f)$&nbsp; bei der Frequenz &nbsp;$f = f_{\rm Nyq}$.
+
{Calculate the maximum value of &nbsp;$H_{\rm TF}(f)$&nbsp; at frequency &nbsp;$f = f_{\rm Nyq}$.
 
|type="{}"}
 
|type="{}"}
 
$|H_{\rm TF} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $ { 1.21 3% } $\ \cdot 10^8$
 
$|H_{\rm TF} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $ { 1.21 3% } $\ \cdot 10^8$
  
{Berechnen Sie die normierte Störleistung entsprechend der Dreiecknäherung.
+
{Calculate the normalized noise power according to the triangular approximation.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_{d, \ \rm  norm}^2 \hspace{0.2cm} = \ $ { 1.7 3% } $\ \cdot 10^7$
 
$\sigma_{d, \ \rm  norm}^2 \hspace{0.2cm} = \ $ { 1.7 3% } $\ \cdot 10^7$
  
{Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit &nbsp;$s_0^2 \cdot T/N_0 = 10^8$?
+
{What is the symbol error probability with &nbsp;$s_0^2 \cdot T/N_0 = 10^8$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \hspace{0.2cm} = \ $ { 0.8 3% } $\ \%$
 
$p_{\rm S} \hspace{0.2cm} = \ $ { 0.8 3% } $\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Allgemein gilt für alle Frequenzen $f \ge  0$: &nbsp;  
+
'''(1)'''&nbsp; In general, for all frequencies $f \ge  0$: &nbsp;  
 
:$$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2
 
:$$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2
 
\cdot \sqrt{2 \cdot |f| \cdot T}  }\hspace{0.05cm}.$$  
 
\cdot \sqrt{2 \cdot |f| \cdot T}  }\hspace{0.05cm}.$$  
*Daraus ergeben sich die gesuchten Sonderfälle:
+
*This gives the special cases we are looking for:
 
:$$f= 0 \text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = 0)|= {\rm sinc}(0) \cdot {\rm e}^0 \hspace{0.15cm}\underline {= 1}
 
:$$f= 0 \text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = 0)|= {\rm sinc}(0) \cdot {\rm e}^0 \hspace{0.15cm}\underline {= 1}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
Line 84: Line 84:
  
  
'''(2)'''&nbsp; Die Grafik zeigt, dass $H_{\rm TF}(f)$ bei $f = f_{\rm Nyq}$ maximal wird. Daraus folgt mit der angegebenen Gleichung, dass
+
'''(2)'''&nbsp; The graph shows that $H_{\rm TF}(f)$ becomes maximal at $f = f_{\rm Nyq}$. It follows with the given equation that
 
:$${\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
:$${\sum\limits_{\kappa = -\infty}^{+\infty}  |H_{\rm SK}(f -
 
  \frac{\kappa}{T})
 
  \frac{\kappa}{T})
 
  |^2}$$
 
  |^2}$$
  
bei der Nyquistfrequenz minimal ist. Für $f = f_{\rm Nyq}$ tragen von der unendlichen Summe allerdings nur die Terme mit $\kappa = 0$ und $\kappa = 1$ relevant zum Ergebnis bei.  
+
is minimal at the Nyquist frequency. However, for $f = f_{\rm Nyq}$, of the infinite sum, only the terms with $\kappa = 0$ and $\kappa = 1$ contribute relevantly to the result.
*Daraus folgt weiter mit dem Ergebnis aus '''(1)''':
+
*From this follows further with the result from '''(1)''':
 
:$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm
 
:$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm
 
  Nyq})=
 
  Nyq})=
Line 99: Line 99:
  
  
'''(3)'''&nbsp; Nähert man das Integral über $H_{\rm TF}(f)$ durch die in der Grafik eingezeichnete Dreieckfläche an, so erhält man:
+
'''(3)'''&nbsp; Approximating the integral over $H_{\rm TF}(f)$ by the triangular area plotted in the graph, we obtain:
 
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2  = T \cdot
 
:$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2  = T \cdot
 
\int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx  T \cdot
 
\int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx  T \cdot
Line 106: Line 106:
  
  
'''(4)'''&nbsp; Gemäß der gegebenen Gleichung erhält man für die (mittlere) Symbolfehlerwahrscheinlichkeit:
+
'''(4)'''&nbsp; According to the given equation, we obtain for the (mean) symbol error probability:
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right
 
  ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7
 
  ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7
Line 113: Line 113:
 
\hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
 
\hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
  
:Da ein Nyquistsystem vorliegt, ist die ungünstigste (worst&ndash;case) Fehlerwahrscheinlichkeit $p_{\rm U}$ genau so groß.
+
:Since a Nyquist system is present, the worst&ndash;case probability $p_{\rm U}$ is just as large.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Digital Signal Transmission: Exercises|^3.5 Linear Nyquist Equalization^]]
 
[[Category:Digital Signal Transmission: Exercises|^3.5 Linear Nyquist Equalization^]]

Revision as of 09:15, 26 May 2022

Transversal filter frequency response

We assume the following for this exercise:

  • binary bipolar NRZ rectangular pulses
$$|H_{\rm S}(f)|= {\rm sinc}(f T) \hspace{0.05cm},$$
  • coaxial cable with cable attenuation  $a_* = 9.2 \ {\rm Np} \ (\approx 80 \ \rm dB)$:
$$|H_{\rm K}(f)|= {\rm e}^{ -9.2 \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm},$$
  • optimal Nyquist equalizer consisting of matched filter and transversal filter:
$$H_{\rm E}(f) = H_{\rm MF}(f) \cdot H_{\rm TF}(f)$$
$$\hspace{0.8cm}{\rm where}\hspace{0.2cm}H_{\rm MF}(f) = H_{\rm S}^{\star}(f) \cdot H_{\rm K}^{\star}(f)\hspace{0.05cm},\hspace{0.2cm} H_{\rm TF}(f) = \frac{1}{\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - {\kappa}/{T}) |^2}\hspace{0.05cm}.$$
Here,  $H_{\rm SK}(f) = H_{\rm S}(f) \cdot H_{\rm K}(f)$  denotes the product of transmitter and channel frequency response.


Because of Nyquist equalization, the eye is maximally open. For the error probability holds:

$$p_{\rm S} \left ( = p_{\rm U} \right ) = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) \hspace{0.05cm}.$$

The normalized interference power at the decision is given by the following equations:

$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f \hspace{0.5cm} = \hspace{0.5cm} \sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{-1/(2T)}^{+1/(2T)} H_{\rm TF}(f) \,{\rm d} f \hspace{0.5cm}= \hspace{0.5cm}T \cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \hspace{0.05cm}.$$

The validity of this equation follows from the periodicity of the transversal filter frequency response  $H_{\rm TF}(f)$.

  • In the graph, the normalized noise power can be seen as the area highlighted in red.
  • As an approximation, the normalized noise power can be calculated by the triangular area shown in blue in the graph.



Notes:


Questions

1

Calculate the magnitude of the transmitter channel frequency response for the frequencies  $f = 0$,  $f = 1/(2T)= f_{\rm Nyq}$  and  $f = 1/T = 2 \cdot f_{\rm Nyq}$.

$|H_{\rm SK} (f = 0)| \hspace{0.8cm} = \ $

$|H_{\rm SK} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $

$\ \cdot 10^{-5}$
$|H_{\rm SK} (f = 1/T)| \hspace{0.25cm} = \ $

2

Calculate the maximum value of  $H_{\rm TF}(f)$  at frequency  $f = f_{\rm Nyq}$.

$|H_{\rm TF} (f = f_{\rm Nyq})| \hspace{0.2cm} = \ $

$\ \cdot 10^8$

3

Calculate the normalized noise power according to the triangular approximation.

$\sigma_{d, \ \rm norm}^2 \hspace{0.2cm} = \ $

$\ \cdot 10^7$

4

What is the symbol error probability with  $s_0^2 \cdot T/N_0 = 10^8$?

$p_{\rm S} \hspace{0.2cm} = \ $

$\ \%$


Solution

(1)  In general, for all frequencies $f \ge 0$:  

$$|H_{\rm SK}(f)|= {\rm sinc}(f T) \cdot {\rm e}^{ -9.2 \cdot \sqrt{2 \cdot |f| \cdot T} }\hspace{0.05cm}.$$
  • This gives the special cases we are looking for:
$$f= 0 \text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = 0)|= {\rm sinc}(0) \cdot {\rm e}^0 \hspace{0.15cm}\underline {= 1} \hspace{0.05cm},$$
$$ f= f_{\rm Nyq}\text{:} \ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{2T})|= {\rm sinc}({1}/{2}) \cdot {\rm e}^{-9.2} \hspace{0.15cm}\underline { \approx 6.43 \cdot 10^{-5}} \hspace{0.05cm},$$
$$ f= {1}/{T} \text{:}\ \hspace{0.1cm}|H_{\rm SK}(f = \frac{1}{T})|= {\rm sinc}({1}) \cdot {\rm e}^{...} \hspace{0.15cm}\underline { = 0} \hspace{0.05cm}.$$


(2)  The graph shows that $H_{\rm TF}(f)$ becomes maximal at $f = f_{\rm Nyq}$. It follows with the given equation that

$${\sum\limits_{\kappa = -\infty}^{+\infty} |H_{\rm SK}(f - \frac{\kappa}{T}) |^2}$$

is minimal at the Nyquist frequency. However, for $f = f_{\rm Nyq}$, of the infinite sum, only the terms with $\kappa = 0$ and $\kappa = 1$ contribute relevantly to the result.

  • From this follows further with the result from (1):
$${\rm Max} \left [ H_{\rm TF}(f) \right ] \ = \ H_{\rm TF}(f = f_{\rm Nyq})= {1}/{2 \cdot |H_{\rm SK}(f = f_{\rm Nyq}) |^2} = \ \frac{1}{2 \cdot (6.43 \cdot 10^{-5})^2}= \frac{10^{10}}{82.69} \hspace{0.15cm}\underline {\approx 1.21 \cdot 10^{8}} \hspace{0.05cm}.$$


(3)  Approximating the integral over $H_{\rm TF}(f)$ by the triangular area plotted in the graph, we obtain:

$$\sigma_{d,\hspace{0.05cm} {\rm norm}}^2 = T \cdot \int_{0}^{1/T} H_{\rm TF}(f) \,{\rm d} f \approx T \cdot \frac{1}{2}\cdot 1.21 \cdot 10^{8}\cdot (0.64 -0.36)\hspace{0.15cm}\underline {\approx 1.7 \cdot 10^{7}} \hspace{0.05cm}.$$


(4)  According to the given equation, we obtain for the (mean) symbol error probability:

$$p_{\rm S} = {\rm Q}\left ( \sqrt{\frac{s_0^2 \cdot T}{N_0 \cdot \sigma_{d,\hspace{0.05cm} {\rm norm}}^2}} \right ) = {\rm Q}\left ( \sqrt{\frac{10^{8}}{1.7 \cdot 10^{7}}} \right ) \approx {\rm Q}(2.42)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm S} \hspace{0.15cm}\underline {\approx 0.8 \%} \hspace{0.05cm}.$$
Since a Nyquist system is present, the worst–case probability $p_{\rm U}$ is just as large.