Difference between revisions of "Aufgaben:Exercise 1.2Z: Three-dimensional Representation of Codes"

From LNTwww
Line 2: Line 2:
 
}}
 
}}
  
[[File:P_ID2400__KC_Z_1_2.png|right|frame|Space $\rm GF(2^3)$ and <br>Code of length $n = 3$]]
+
[[File:P_ID2400__KC_Z_1_2.png|right|frame|Space&nbsp; $\rm GF(2^3)$&nbsp; and&nbsp; <br>code of length&nbsp; $n = 3$]]
Codes for error detection or error correction can be represented very clearly in&nbsp; $n$-dimensional space. We restrict ourselves here to binary codes of length&nbsp; $n = 3$:
+
Codes for error detection or error correction can be represented very clearly in an&nbsp; $n$-dimensional space.&nbsp; We restrict ourselves here to binary codes of length&nbsp; $n = 3$:
:$$\underline{x} = (x_{1}, x_{2}, x_{3}) \hspace{0.1cm} \in \hspace{0.1cm}{\rm GF}(2^3) \hspace{0.05cm},\hspace{0.5cm} x_i = \{0, 1 \}\hspace{0.05cm},\hspace{0.2cm} i = 1, 2, 3\hspace{0.05cm}.$$
+
:$$\underline{x} = (x_{1},\ x_{2},\ x_{3}) \hspace{0.1cm} \in \hspace{0.1cm}{\rm GF}(2^3) \hspace{0.05cm},\hspace{0.5cm} x_i = \{0,\ 1 \}\hspace{0.05cm},\hspace{0.2cm} i = 1, 2, 3\hspace{0.05cm}.$$
 +
 
 +
In general,&nbsp; for block coding:
 +
*The information word&nbsp; $\underline{u} = (u_{1},\ u_{2}, \ \text{...} , \ u_{k})$&nbsp; is uniquely transformed into the code word&nbsp; $\underline{x} =(x_{1},\ x_{2}, \ \text{...} , \ , x_{n})$.
  
In general, for block coding:
 
*The information word&nbsp; $\underline{u} = (u_{1}, u_{2}, \ \text{...} , \ u_{k})$&nbsp; is uniquely transformed into the codeword&nbsp; $\underline{x} =(x_{1}, x_{2}, \ \text{...} , \ , x_{n})$&nbsp; .
 
 
*The code rate is&nbsp; $R = k/n$.
 
*The code rate is&nbsp; $R = k/n$.
*The Hamming distance&nbsp; $d_{\rm H}(x, \hspace{0.05cm}x\hspace{0.05cm}')$&nbsp; between two codewords&nbsp; $x ∈ \mathcal{C}$&nbsp; and&nbsp; $x\hspace{0.05cm}' ∈ \mathcal{C}$&nbsp; indicates the number of bit positions in which&nbsp; $x$&nbsp; and&nbsp; $x\hspace{0.05cm}'$&nbsp; differ.
+
 
 +
*The Hamming distance&nbsp; $d_{\rm H}(x, \hspace{0.05cm}x\hspace{0.05cm}')$&nbsp; between two code words&nbsp; $x ∈ \mathcal{C}$&nbsp; and&nbsp; $x\hspace{0.05cm}' ∈ \mathcal{C}$&nbsp; indicates the number of bit positions in which&nbsp; $x$&nbsp; and&nbsp; $x\hspace{0.05cm}'$&nbsp; differ.
 +
 
 
*The minimum distance&nbsp; $d_{\rm min} = {\rm min}\big[d_{\rm H}(x, \hspace{0.05cm}x\hspace{0.05cm}')\big]$&nbsp; is a measure of the correctability of a code.
 
*The minimum distance&nbsp; $d_{\rm min} = {\rm min}\big[d_{\rm H}(x, \hspace{0.05cm}x\hspace{0.05cm}')\big]$&nbsp; is a measure of the correctability of a code.
*It can&nbsp; $e =d_{\rm min} - 1$&nbsp; detect errors and&nbsp; $t =(d_{\rm min} - 1)/2$&nbsp; correct errors.
 
*The last statement, however, is valid only for odd&nbsp; $d_{\rm min}$.
 
  
 +
*It can detect&nbsp; $e =d_{\rm min} - 1$&nbsp; errors and can correct&nbsp; $t =(d_{\rm min} - 1)/2$&nbsp;  errors.
 +
 +
*The last statement,&nbsp; however,&nbsp; is valid only for odd&nbsp; $d_{\rm min}$.
  
  
  
  
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/Objective_of_Channel_Coding|"Objective of Channel Coding"]]
  
Hints:
+
*In addition,&nbsp; some simple questions about the chapter&nbsp; [[Channel_Coding/Examples_of_Binary_Block_Codes|"Examples of binary block codes"]]&nbsp; are anticipated.
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/Objective_of_Channel_Coding|Obective of Channel Coding]]
 
*In addition, some simple questions about the chapter&nbsp; [[Channel_Coding/Examples_of_Binary_Block_Codes|Examples of binary block codes]]&nbsp; are anticipated.
 
 
   
 
   
  
Line 32: Line 36:
 
{Which statements hold if all points in&nbsp; $\rm GF(2^3)$&nbsp; are occupied?
 
{Which statements hold if all points in&nbsp; $\rm GF(2^3)$&nbsp; are occupied?
 
|type="[]"}
 
|type="[]"}
+ The assignment&nbsp; $\underline{u} = (u_{1}, u_{2}, u_{3})$ &nbsp; → &nbsp; $\underline{x} = (x_{1}, x_{2},x_{3})$ holds.
+
+ The assignment&nbsp; $\underline{u} = (u_{1},\ u_{2},\ u_{3})$ &nbsp; → &nbsp; $\underline{x} = (x_{1},\ x_{2},\ x_{3})$&nbsp; holds.
- The identity&nbsp; $\underline{x} = \underline{u}$ holds.
+
- The identity&nbsp; $\underline{x} = \underline{u}$&nbsp; holds.
 
+ The code rate is&nbsp; $R = 1$.
 
+ The code rate is&nbsp; $R = 1$.
-The minimum distance between two codewords is&nbsp; $d_{\rm min} = 2$.
+
-The minimum distance between two code words is&nbsp; $d_{\rm min} = 2$.
  
{Which statements are true for a (3, 2, 2)-block code?
+
{Which statements are true for a&nbsp; $(3, 2, 2)$&ndash;block code?
 
|type="[]"}
 
|type="[]"}
+ code&nbsp; $\mathcal{C}_{1} = \{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)\}$&nbsp; is possible.
+
+ Code&nbsp; $\mathcal{C}_{1} = \{(0, 0, 0),\ (0, 1, 1),\ (1, 0, 1),\ (1, 1, 0)\}$&nbsp; is possible.
+ Code&nbsp; $\mathcal{C}_{2} = \{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)\}$&nbsp; is possible.
+
+ Code&nbsp; $\mathcal{C}_{2} = \{(0, 0, 1),\ (0, 1, 0),\ (1, 0, 0),\ (1, 1, 1)\}$&nbsp; is possible.
- Code&nbsp; $\mathcal{C}_{3} = \{(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)\}$&nbsp; is possible.
+
- Code&nbsp; $\mathcal{C}_{3} = \{(0, 0, 0),\ (0, 1, 1),\ (1, 0, 0),\ (1, 1, 1)\}$&nbsp; is possible.
  
{What properties does the code defined in subtask '''(2)''' show&nbsp; $\mathcal{C}_{1}$?
+
{What properties does the code&nbsp; $\mathcal{C}_{1}$&nbsp; defined in subtask&nbsp; '''(2)'''&nbsp; show?
 
|type="[]"}
 
|type="[]"}
 
+ A bit error can be detected.
 
+ A bit error can be detected.
 
- A bit error can be corrected.
 
- A bit error can be corrected.
  
{What properties does the code show&nbsp; $\mathcal{C}_{4}= \{(0, 0, 0), (1, 1, 1)\}$?
+
{What properties does the code&nbsp; $\mathcal{C}_{4}= \{(0, 0, 0),\ (1, 1, 1)\}$&nbsp;  show?
 
|type="[]"}
 
|type="[]"}
 
- The code rate is&nbsp; $R = 1/4$.
 
- The code rate is&nbsp; $R = 1/4$.

Revision as of 14:01, 6 June 2022

Space  $\rm GF(2^3)$  and 
code of length  $n = 3$

Codes for error detection or error correction can be represented very clearly in an  $n$-dimensional space.  We restrict ourselves here to binary codes of length  $n = 3$:

$$\underline{x} = (x_{1},\ x_{2},\ x_{3}) \hspace{0.1cm} \in \hspace{0.1cm}{\rm GF}(2^3) \hspace{0.05cm},\hspace{0.5cm} x_i = \{0,\ 1 \}\hspace{0.05cm},\hspace{0.2cm} i = 1, 2, 3\hspace{0.05cm}.$$

In general,  for block coding:

  • The information word  $\underline{u} = (u_{1},\ u_{2}, \ \text{...} , \ u_{k})$  is uniquely transformed into the code word  $\underline{x} =(x_{1},\ x_{2}, \ \text{...} , \ , x_{n})$.
  • The code rate is  $R = k/n$.
  • The Hamming distance  $d_{\rm H}(x, \hspace{0.05cm}x\hspace{0.05cm}')$  between two code words  $x ∈ \mathcal{C}$  and  $x\hspace{0.05cm}' ∈ \mathcal{C}$  indicates the number of bit positions in which  $x$  and  $x\hspace{0.05cm}'$  differ.
  • The minimum distance  $d_{\rm min} = {\rm min}\big[d_{\rm H}(x, \hspace{0.05cm}x\hspace{0.05cm}')\big]$  is a measure of the correctability of a code.
  • It can detect  $e =d_{\rm min} - 1$  errors and can correct  $t =(d_{\rm min} - 1)/2$  errors.
  • The last statement,  however,  is valid only for odd  $d_{\rm min}$.



Hints:



Questions

1

Which statements hold if all points in  $\rm GF(2^3)$  are occupied?

The assignment  $\underline{u} = (u_{1},\ u_{2},\ u_{3})$   →   $\underline{x} = (x_{1},\ x_{2},\ x_{3})$  holds.
The identity  $\underline{x} = \underline{u}$  holds.
The code rate is  $R = 1$.
The minimum distance between two code words is  $d_{\rm min} = 2$.

2

Which statements are true for a  $(3, 2, 2)$–block code?

Code  $\mathcal{C}_{1} = \{(0, 0, 0),\ (0, 1, 1),\ (1, 0, 1),\ (1, 1, 0)\}$  is possible.
Code  $\mathcal{C}_{2} = \{(0, 0, 1),\ (0, 1, 0),\ (1, 0, 0),\ (1, 1, 1)\}$  is possible.
Code  $\mathcal{C}_{3} = \{(0, 0, 0),\ (0, 1, 1),\ (1, 0, 0),\ (1, 1, 1)\}$  is possible.

3

What properties does the code  $\mathcal{C}_{1}$  defined in subtask  (2)  show?

A bit error can be detected.
A bit error can be corrected.

4

What properties does the code  $\mathcal{C}_{4}= \{(0, 0, 0),\ (1, 1, 1)\}$  show?

The code rate is  $R = 1/4$.
The code rate is  $R = 1/3$.
A bit error can be detected.
A bit error can be corrected.


Solution

(1)  Correct statements 1 and 3:

  • In this assignment, $k = 3$ information bits are mapped to $n = 3$ code bits   ⇒   $R = k/n = 1$.
  • The statement $\underline{x} = \underline{u} $ would only hold in the case of systematic coding.
  • For example, in principle, $(0, 0, 0)$   →   $(0, 1, 1)$ would also be possible.
  • The last statement is certainly false: from the graph one can see the minimum distance $d_{\rm min} = 1$.


Two (3, 2, 2) block codes

(2)  Correct statements 1 and 3:

  • $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ actually describe codes with rate $R = 2/3$ and minimum distance $d_{\rm min} = 2$.
  • In the graph, the green dots mark the code $\mathcal{C}_{1}$ and the blue dots mark the code $\mathcal{C}_{2}$.
  • For the code $\mathcal{C}_{3}$ - also with rate $R = 2/3$ - the minimum distance between two codewords is $d_{\rm min} = 1$, for example between $(0, 0, 0)$ and $(1, 0, 0)$ or between $(0, 1, 1)$ and $(1, 1, 1)$.


(3)  Correct is only statement 1:

  • Only a bit error can be detected with the minimum distance $d_{\rm min} = 2$.
  • In the upper graph, the green dots indicate allowed codewords of $\mathcal{C}_{1}$. If a blue dot is received, this indicates a transmission error.
  • On the other hand, error correction is not possible with $d_{\rm min} = 2$.
  • The code $\mathcal{C}_{1}$ corresponds to the Single Parity-check Code (3, 2, 2).


(3, 1, 3) block code

(4)  Correct answers 2, 3, and 4:

  • $C_{4}$ describes the (3, 1, 3) repetition code.
  • In this code, two of the total eight possible points are occupied, from which one could incorrectly conclude the code rate $R = 1/4$. However, the code rate is calculated according to $R = k/n = 1/3$.
  • From the lower diagram one recognizes that because of $d_{\rm min} = 3$ now also a bit error can be corrected.
  • During decoding, all light green points (with black outline) are transferred to the green point $(0, 0, 0)$ and all light blue points are transferred to the blue point $(1, 1, 1)$.
  • Up to two bit errors can be detected at the same time (one of course).