Difference between revisions of "Aufgaben:Exercise 1.07Z: Classification of Block Codes"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID2391__KC_Z_1_7_neu.png|right|frame|Block codes of length  $n = 4$ ]]
+
[[File:P_ID2391__KC_Z_1_7_neu.png|right|frame|Block codes of length  $n = 4$ '''Korrektur''' code ]]
  
 
We consider block codes of length  $n = 4$:
 
We consider block codes of length  $n = 4$:
  
*the  [[Channel_Coding/Examples_of_Binary_Block_Codes#Single_Parity-check_Codes|single parity–check]]  code  $\text{SPC (4, 3)}$   ⇒   "Code 1"   with the generator matrix
+
*the  [[Channel_Coding/Examples_of_Binary_Block_Codes#Single_Parity-check_Codes|single parity–check code]]  $\text{SPC (4, 3)}$   ⇒   "code 1"   with the generator matrix
  
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  
*the  [[Channel_Coding/Examples_of_Binary_Block_Codes#Repetition_Codes|repetition code]]   $\text{RC (4, 1)}$   ⇒   "Code 2"   with the parity-check matrix
+
*the  [[Channel_Coding/Examples_of_Binary_Block_Codes#Repetition_Codes|repetition code]]  $\text{RC (4, 1)}$   ⇒   "code 2"   with the parity-check matrix
  
 
:$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
 
:$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  
*the   $\text{(4, 2)}$ block code   ⇒   "Code 3"   with the generator matrix
+
*the  $\text{(4, 2)}$  block code   ⇒   "code 3"   with the generator matrix
  
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  
*the  $\text{(4, 2)}$ block code   ⇒   "Code 4"   with the generator matrix
+
*the  $\text{(4, 2)}$  block code   ⇒   "code 4"   with the generator matrix
  
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &0 &0\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &0 &0\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  
*another "Code 5"   with the code cardinality (Überstetzung von Codeumfang laut Wachter-Zeh VL)  $|\hspace{0.05cm}C\hspace{0.05cm}| = 6$.
+
*another "code 5"   with code size  $|\hspace{0.05cm}C\hspace{0.05cm}| = 6$.
  
  
The individual codes are explicitly indicated in the graphic. The questions for these tasks are about the terms
+
The individual codes are explicitly indicated in the graphic.  The questions for these tasks are about the terms
  
 
*[[Channel_Coding/General_Description_of_Linear_Block_Codes#Linear_codes_and_cyclic_codes|linear codes]],
 
*[[Channel_Coding/General_Description_of_Linear_Block_Codes#Linear_codes_and_cyclic_codes|linear codes]],
Line 37: Line 37:
  
  
 +
Hints :
  
 +
*This exercise belongs to the chapter  [[Channel_Coding/General_Description_of_Linear_Block_Codes|"General description of linear block codes"]].
  
 
+
*Reference is also made to the pages  [[Channel_Coding/Examples_of_Binary_Block_Codes#Single_Parity-check_Codes|"single parity–check codes"]]  and [[Channel_Coding/Examples_of_Binary_Block_Codes#Repetition_Codes|"repetition codes"]].
Hints :
 
 
 
*This exercise belongs to the chapter  [[Channel_Coding/General_Description_of_Linear_Block_Codes|General description of linear block codes]].
 
*Reference is also made to the pages  [[Channel_Coding/Examples_of_Binary_Block_Codes#Single_Parity-check_Codes|single parity–check codes]]  and [[Channel_Coding/Examples_of_Binary_Block_Codes#Repetition_Codes|repetition codes]].
 
  
  
Line 51: Line 49:
  
 
<quiz display=simple>
 
<quiz display=simple>
{How can "Code 5" be described?
+
{How can&nbsp; "code 5"&nbsp; be described?
 
|type="[]"}
 
|type="[]"}
+ There are exactly two zeros in each codeword.
+
+ There are exactly two zeros in each code word.
+ There are exactly two ones in each codeword.
+
+ There are exactly two ones in each code word.
- After each $0$, the symbols&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; are equally likely.
+
- After each&nbsp; "$0$",&nbsp; the symbols&nbsp; "$0$"&nbsp; and&nbsp; "$1$"&nbsp; are equally likely.
  
 
{Which of the following block codes are linear?
 
{Which of the following block codes are linear?

Revision as of 14:07, 10 July 2022

Block codes of length  $n = 4$ Korrektur code

We consider block codes of length  $n = 4$:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  • the  repetition code  $\text{RC (4, 1)}$   ⇒   "code 2"   with the parity-check matrix
$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  • the  $\text{(4, 2)}$  block code   ⇒   "code 3"   with the generator matrix
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  • the  $\text{(4, 2)}$  block code   ⇒   "code 4"   with the generator matrix
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &0 &0\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  • another "code 5"   with code size  $|\hspace{0.05cm}C\hspace{0.05cm}| = 6$.


The individual codes are explicitly indicated in the graphic.  The questions for these tasks are about the terms



Hints :



Questions

1

How can  "code 5"  be described?

There are exactly two zeros in each code word.
There are exactly two ones in each code word.
After each  "$0$",  the symbols  "$0$"  and  "$1$"  are equally likely.

2

Which of the following block codes are linear?

code 1,
code 2,
code 3,
code 4,
code 5.

3

Which of the following block codes are systematic?

code 1,
code 2,
code 3,
code 4,
code 5.

4

Which code pairs are dual to each other?

code 1 and code 2,
code 2 and code 3,
code 3 and code 4.


Solution

(1)  Statements 1 and 2 are correct:

  • That is why there are $\rm 4 \ over \ 2 = 6$ codewords.
  • Statement 3 is false. For example, if the first bit is $0$, there is one codeword starting $00$ and two codewords starting $01$.


(2)  Statements 1 to 4 are correct:

  • All codes that can be described by a generator matrix $\boldsymbol {\rm G}$ and/or a parity-check matrix $\boldsymbol {\rm H}$ are linear.
  • In contrast, "Code 5" does not satisfy any of the conditions required for linear codes. For example
  • is missing the all zero word,
  • the code cardinality $|\mathcal{C}|$ is not a power of two,
  • gives $(0, 1, 0, 1) \oplus (1, 0, 1, 0) = (1, 1, 1, 1)$ no valid codeword.


(3)  Statements 1 to 3 are correct:

  • In a systematic code, the first $k$ bits of each codeword $\underline{x}$ must always be equal to the information word $\underline{u}$.
  • This is achieved if the beginning of the generator matrix $\boldsymbol {\rm G}$ is a unit matrix $\boldsymbol{\rm I}_{k}$.
  • This is true for "Code 1" (with dimension $k = 3$), "Code 2" (with $k = 1$) and "code 3" (with $k = 2$).
  • The generator matrix of "Code 2", however, is not explicitly stated. It is:
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$


(4)  Statement 1 is correct:

  • Dual codes are those where the parity-check matrix $\boldsymbol {\rm H}$ of one code is equal to the generator matrix $\boldsymbol {\rm G}$ of the other code.
  • For example, this is true for "Code 1" and "Code 2."
  • For the SPC (4, 3) holds:
$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.3cm} { \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
and for the repetition code RC (4, 1):
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.3cm} { \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • Statement 2 is certainly wrong, already for dimensional reasons: The generator matrix $\boldsymbol {\rm G}$ of "Code 3" is a $2×4$ matrix and the parity-check matrix $\boldsymbol {\rm H}$ of "Code 2" is a $3×4$ matrix.
  • "Code 3" and "Code 4" also do not satisfy the conditions of dual codes. The parity-check equations of
$${\rm Code}\hspace{0.15cm}3 = \{ (0, 0, 0, 0) \hspace{0.05cm},\hspace{0.1cm} (0, 1, 1, 0) \hspace{0.05cm},\hspace{0.1cm}(1, 0, 0, 1) \hspace{0.05cm},\hspace{0.1cm}(1, 1, 1, 1) \}$$
are as follows:
$$x_1 \oplus x_4 = 0\hspace{0.05cm},\hspace{0.2cm}x_2 \oplus x_3 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.$$
In contrast, the generator matrix of "Code 4" is given as follows:
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &0 &0\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$