Difference between revisions of "Aufgaben:Exercise 1.08: Identical Codes"

From LNTwww
Line 20: Line 20:
 
*Replacing a row with a linear combination between this row and another one.
 
*Replacing a row with a linear combination between this row and another one.
  
 +
For the code sought in subtask '''(3)'''  $\mathcal{C}_{\rm sys}$  with generator matrix  $\boldsymbol{\rm G}_{\rm sys}$  it is further required to be systematic.
  
Für den in der Teilaufgabe '''(3)''' gesuchten Code  $\mathcal{C}_{\rm sys}$  mit Generatormatrix  $\boldsymbol{\rm G}_{\rm sys}$  wird weiter gefordert, dass er systematisch ist.
 
  
  
Line 29: Line 29:
  
  
 +
Hints:
  
''Hinweise'' :
+
*This exercise belongs to the chapter  [[Channel_Coding/General_Description_of_Linear_Block_Codes|General Description of Linear Block Codes]].
 
+
*Reference is made in particular to the page  [[Channel_Coding/General_Description_of_Linear_Block_Codes#Systematische_Codes|Systematic Codes]].
*Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Allgemeine_Beschreibung_linearer_Blockcodes|Allgemeine Beschreibung linearer Blockcodes]].
+
*Reference is also made to the so-called  ''Singleton bound''. This states that the minimum Hamming distance of a  $(n, k)$ block code is upper bounded:   $d_{\rm min} \le n - k +1.$
*Bezug genommen wird insbesondere auf die Seite  [[Channel_Coding/Allgemeine_Beschreibung_linearer_Blockcodes#Systematische_Codes|Systematische Codes]].
 
*Bezug genommen wird zudem auf die so genannte  ''Singleton–Schranke''. Diese besagt, dass die minimale Hamming–Distanz eines  $(n, k)$–Blockcodes nach oben beschränkt ist:   $d_{\rm min} \le n - k +1.$
 
 
   
 
   
  
Line 40: Line 39:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die Kenngrößen des gegebenen Codes&nbsp; $\mathcal{C}$&nbsp; an.
+
{Give the characteristics of the given code&nbsp; $\mathcal{C}$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$n \hspace{0.3cm} = \ $ { 6 }
 
$n \hspace{0.3cm} = \ $ { 6 }
Line 52: Line 51:
 
$d_{\rm min} \hspace{0.01cm} = \ $ { 3 }
 
$d_{\rm min} \hspace{0.01cm} = \ $ { 3 }
  
{Gibt es einen&nbsp; $(6, 3)$–Blockcode mit größerer Minimaldistanz?
+
{Is there a&nbsp; $(6, 3)$ block code with larger minimum distance?
 
|type="()"}
 
|type="()"}
 
+ Ja.
 
+ Ja.
 
- Nein.
 
- Nein.
  
{Wie lautet die Generatormatrix&nbsp; ${\boldsymbol{\rm G}}_{\rm sys}$&nbsp; des identischen systematischen Codes?
+
{What is the generator matrix&nbsp; ${\boldsymbol{\rm G}}_{\rm sys}$&nbsp; of the identical systematic code?
 
|type="[]"}
 
|type="[]"}
- Die 1. Zeile lautet &nbsp; "$1 \ 0 \ 1 \ 1 \ 0 \ 1$".
+
- The 1st row is &nbsp; "$1 \ 0 \ 1 \ 1 \ 0 \ 1$".
+ Die 2. Zeile lautet &nbsp;  "$0 \ 1 \ 0 \ 1 \ 0 \ 1$".
+
+ The 2nd row is &nbsp;  "$0 \ 1 \ 0 \ 1 \ 0 \ 1$".
+ Die 3. Zeile lautet &nbsp;  "$0 \ 0 \ 1 \ 0 \ 1 \ 1$".
+
+ The 3rd row is &nbsp;  "$0 \ 0 \ 1 \ 0 \ 1 \ 1$".
  
{Welche Zuordnungen ergeben sich bei dieser Codierung?
+
{What assignments result from this coding?
 
|type="[]"}
 
|type="[]"}
 
+ $\underline{u} = (0, 0, 0)  \ \Rightarrow \  \underline{x}_{\rm sys} = (0, 0, 0, 0, 0, 0)$.
 
+ $\underline{u} = (0, 0, 0)  \ \Rightarrow \  \underline{x}_{\rm sys} = (0, 0, 0, 0, 0, 0)$.
Line 70: Line 69:
  
  
{Welche Prüfbits hat der systematische Code&nbsp; $\underline{x}_{\rm sys} = (u_{1}, u_{2}, u_{3}, p_{1}, p_{2}, p_{3})$?
+
{Which parity bits has the systematic code&nbsp; $\underline{x}_{\rm sys} = (u_{1}, u_{2}, u_{3}, p_{1}, p_{2}, p_{3})$?
 
|type="[]"}
 
|type="[]"}
 
+$p_{1} = u_{1} \oplus u_{2},$
 
+$p_{1} = u_{1} \oplus u_{2},$
Line 80: Line 79:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der vorgegebene Code $\mathcal{C}$ wird durch folgende Kenngrößen charakterisiert:
+
'''(1)'''&nbsp; The given code $\mathcal{C}$ is characterized by the following parameters:
*Bitanzahl der Codeworte:&nbsp; $\underline{n = 6}$,
+
*Number of bits of the code words:&nbsp; $\underline{n = 6}$,
*Bitanzahl der Informationsworte:&nbsp; $\underline{k = 3}$,
+
*Number of bits of information words:&nbsp; $\underline{k = 3}$,
*Anzahl der Prüfbitgleichungen:&nbsp; $\underline{m = n - k = 3}$,
+
*Number of parity bit equations:&nbsp; $\underline{m = n - k = 3}$,
*Coderate:&nbsp; $R = k/n = 3/6  \Rightarrow  \underline{R = 0.5}$,
+
*Code rate:&nbsp; $R = k/n = 3/6  \Rightarrow  \underline{R = 0.5}$,
*Anzahl der Codeworte (Codeumfang):&nbsp; $|\mathcal{C}| = 2^k  \Rightarrow  \underline{|C| = 8}$,
+
*Number of code words (code cardinality):&nbsp; $|\mathcal{C}| = 2^k  \Rightarrow  \underline{|C| = 8}$,
*minimale Hamming–Distanz (siehe Tabelle):&nbsp; $\underline{d}_{\rm min} \underline{= 3}$.
+
*minimum Hamming distance (see table):&nbsp; $\underline{d}_{\rm min} \underline{= 3}$.
  
  
  
'''(2)'''&nbsp; Richtig ist $\underline{\rm JA}$:
+
'''(2)'''&nbsp; Correct is $\underline{\rm YES}$:
*Nach der Singleton–Schranke gilt $d_{\rm min} ≤ n k + 1$. Mit $n = 6$ und $k = 3$ erhält man hierfür $d_{\rm min} ≤ 4$.  
+
*According to the singleton bound $d_{\rm min} ≤ n - k + 1$ holds. With $n = 6$ and $k = 3$ one obtains $d_{\rm min} ≤ 4$.  
*Es kann also durchaus ein (6, 3)–Blockcode mit größerer Minimaldistanz konstruiert werden. Wie ein solcher Code aussieht, wurde freundlicherweise nicht gefragt.
+
*It is thus quite possible to construct a (6, 3) block code with larger minimal distance. How such a code looks, was kindly not asked.
  
  
Die Minimaldistanz aller Hamming–Codes ist $d_{\rm min} = 3$, und nur der Sonderfall mit $n = 3$ und $k = 1$ erreicht den Grenzwert. Dagegen erreichen das Maximum entsprechend der Singleton–Schranke:
+
The minimum distance of all Hamming codes is $d_{\rm min} = 3$, and only the special case with $n = 3$ and $k = 1$ reaches the limit. In contrast, the maximum reach according to the Singleton bound:
  
*alle [[Channel_Coding/Beispiele_binärer_Blockcodes#Wiederholungscodes|Wiederholungscodes]] (''Repetition Codes'', RC) wegen $k = 1$und $d_{\rm min} = n$; hierzu gehört auch der (3, 1)–Hamming–Code, der ja bekannterweise identisch ist mit RC (3, 1),
+
*all [[Channel_Coding/Examples_of_Binary_Block_Codes#Repetition_Codes|repetition codes]] (RC) because $k = 1$ and $d_{\rm min} = n$; this includes the (3, 1) Hamming code, which is known to be identical to RC (3, 1),
  
*alle [[Channel_Coding/Beispiele_binärer_Blockcodes#Single_Parity.E2.80.93check_Codes|Single Parity–check Codes]] (SPC): $k = n – 1, d_{\rm min} = 2$.
+
*all [[Channel_Coding/Examples_of_Binary_Block_Codes#Single_Parity-check_Codes|single parity–check codes]] (SPC): $k = n – 1, d_{\rm min} = 2$.
  
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
'''(3)'''&nbsp; Correct are the <u>solutions 2 and 3</u>:
*Vertauscht man Zeilen in der Generatormatrix $\boldsymbol {\rm G}$, so kommt man zu einem identischen Code $\mathcal{C}'$. Das heißt: Die Codes $\mathcal{C}$ und $\mathcal{C}'$ beinhalten die genau gleichen Codeworte.  
+
*If we swap rows in the generator matrix $\boldsymbol {\rm G}$, we arrive at an identical code $\mathcal{C}'$. That is, the codes $\mathcal{C}$ and $\mathcal{C}'$ contain the exact same code words.  
*Beispielsweise erhält man nach zyklischem Zeilentausch $2 \rightarrow 1, 3 \rightarrow 2$ und $1 \rightarrow 3$ die neue Matrix
+
*For example, after cyclic row swapping $2 \rightarrow 1, 3 \rightarrow 2$, and $1 \rightarrow 3$, one obtains the new matrix
  
 
:$${ \boldsymbol{\rm G}}' = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}}' = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  
*Die erste und die letzte Zeile der neuen Matrix entsprechen schon den Vorgaben eines systematischen Codes, nämlich, dass deren Generatormatrix ${ \boldsymbol{\rm G}_{\rm sys}}$ mit einer Diagonalmatrix beginnen muss.  
+
*The first and the last row of the new matrix already comply with the requirements of a systematic code, namely that its generator matrix ${ \boldsymbol{\rm G}_{\rm sys}}$ must start with a diagonal matrix.  
*Ersetzt man die Zeile 2 durch die Modulo–2–Summe von Zeile 2 und 3, so erhält man:
+
*Replacing row 2 by the modulo 2 sum of rows 2 and 3, we get:
  
 
:$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  
*Dieser systematische Code beinhaltet genau die gleichen Codeworte wie die Codes $\mathcal{C}$ und $\mathcal{C}'$.
+
*This systematic code contains exactly the same codewords as the codes $\mathcal{C}$ and $\mathcal{C}'$.
  
  
  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:
+
'''(4)'''&nbsp; Correct are the <u>solutions 1 and 2</u>:
*Wendet man die Gleichung $\underline{x}_{\rm sys} = \underline{u} \cdot \boldsymbol{\rm G}_{\rm sys}$ auf die obigen Beispiele an, so erkennt man, dass die beiden ersten Aussagen richtig sind, nicht aber die letzte.
+
*Applying the equation $\underline{x}_{\rm sys} = \underline{u} \cdot \boldsymbol{\rm G}_{\rm sys}$ to the above examples, we see that the first two statements are correct, but not the last one.
*Ohne Rechnung kommt man zum gleichen Ergebnis, wenn man berücksichtigt, dass
+
*Without calculation one comes to the same result, if one considers that
  
:*das systematische Codewort $\underline{x}_{\rm sys}$ mit $\underline{u}$ beginnen muss,
+
:*the systematic codeword $\underline{x}_{\rm sys}$ must start with $\underline{u}$,
:*der Code $\mathcal{C}_{\rm sys}$ die gleichen Codeworte beinhaltet wie der vorgegebene Code ''\mathcal{C}''.
+
:*the code $\mathcal{C}_{\rm sys}$ contains the same codewords as the given code ''\mathcal{C}''.
  
*Für $\underline{u} = (0, 1, 0)$ lautet somit das Codewort $(0, 1, 0, ?, ?, ?)$. Ein Vergleich mit der Codetabelle von $\mathcal{C}$ auf der Angabenseite führt zu $\underline{x}_{\rm sys} = (0, 1, 0, 1, 0, 1)$.
+
*For $\underline{u} = (0, 1, 0)$, the code word is thus $(0, 1, 0, ?, ?, ?)$. A comparison with the code table of $\mathcal{C}$ on the information page leads to $\underline{x}_{\rm sys} = (0, 1, 0, 1, 0, 1)$.
  
  
  
'''(5)'''&nbsp; Richtig ist nur die <u>Aussage 1</u>. Die Angaben für $p_{2}$ und $p_{3}$ sind dagegen genau vertauscht.
+
'''(5)'''&nbsp; Only <u>statement 1</u> is correct. The statements for $p_{2}$ and $p_{3}$, on the other hand, are exactly reversed.
*Bei systematischer Codierung besteht folgender Zusammenhang zwischen Generator– und Prüfmatrix:  
+
*With systematic coding, the following relationship exists between the generator matrix and the parity-check matrix:  
  
 
:$${ \boldsymbol{\rm G}} =\left({ \boldsymbol{\rm I}}_k \: ; \:{ \boldsymbol{\rm P}} \right) \hspace{0.3cm}\Leftrightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} =\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}} =\left({ \boldsymbol{\rm I}}_k \: ; \:{ \boldsymbol{\rm P}} \right) \hspace{0.3cm}\Leftrightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} =\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$
  
[[File:P_ID2395__KC_A_1_8_ML.png|right|frame|Schaubild der Prüfgleichungen]]
+
[[File:P_ID2395__KC_A_1_8_ML.png|right|frame|Chart of parity-check equations]]
*Angewendet auf das aktuelle Beispiel erhält man so:
+
*Applied to the current example, we obtain thus:
  
 
:$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{\rm sys} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{\rm sys} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  
Daraus ergeben sich Prüfgleichungen (siehe Grafik):
+
This results in parity-check equations (see graph):
 
:$$u_1 \oplus u_2 \oplus p_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_1 = u_1 \oplus u_2 \hspace{0.05cm},$$
 
:$$u_1 \oplus u_2 \oplus p_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_1 = u_1 \oplus u_2 \hspace{0.05cm},$$
 
:$$ u_1 \oplus u_3 \oplus p_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_2 = u_1 \oplus u_3 \hspace{0.05cm},$$
 
:$$ u_1 \oplus u_3 \oplus p_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_2 = u_1 \oplus u_3 \hspace{0.05cm},$$

Revision as of 13:33, 6 July 2022

Assignment of the  $(6, 3)$ block code

We consider a block code  $\mathcal{C}$ described by the following generator matrix:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 0 &0 &1 &0 &1 &1\\ 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.$$

The mapping between the information words  $\underline{u}$  and the code words  $\underline{x}$  can be seen in the table. It can be seen that this is not a systematic code.

By manipulating the generator matrix  $\boldsymbol {\rm G}$  identical codes can be constructed from it. This refers to codes with the same code words but different assignments  $\underline{u} \rightarrow \underline{x}$.


The following operations are allowed to obtain identical code:

  • swapping or permuting the rows,
  • Multiplying all rows by a constant vector not equal to  $0$,
  • Replacing a row with a linear combination between this row and another one.

For the code sought in subtask (3)  $\mathcal{C}_{\rm sys}$  with generator matrix  $\boldsymbol{\rm G}_{\rm sys}$  it is further required to be systematic.





Hints:

  • This exercise belongs to the chapter  General Description of Linear Block Codes.
  • Reference is made in particular to the page  Systematic Codes.
  • Reference is also made to the so-called  Singleton bound. This states that the minimum Hamming distance of a  $(n, k)$ block code is upper bounded:   $d_{\rm min} \le n - k +1.$



Questions

1

Give the characteristics of the given code  $\mathcal{C}$ .

$n \hspace{0.3cm} = \ $

$k \hspace{0.3cm} = \ $

$m \hspace{0.15cm} = \ $

$R \hspace{0.2cm} = \ $

$|\hspace{0.05cm}\mathcal{C}\hspace{0.05cm}| \hspace{-0.05cm} = \ $

$d_{\rm min} \hspace{0.01cm} = \ $

2

Is there a  $(6, 3)$ block code with larger minimum distance?

Ja.
Nein.

3

What is the generator matrix  ${\boldsymbol{\rm G}}_{\rm sys}$  of the identical systematic code?

The 1st row is   "$1 \ 0 \ 1 \ 1 \ 0 \ 1$".
The 2nd row is   "$0 \ 1 \ 0 \ 1 \ 0 \ 1$".
The 3rd row is   "$0 \ 0 \ 1 \ 0 \ 1 \ 1$".

4

What assignments result from this coding?

$\underline{u} = (0, 0, 0) \ \Rightarrow \ \underline{x}_{\rm sys} = (0, 0, 0, 0, 0, 0)$.
$\underline{u} = (0, 0, 1) \ \Rightarrow \ \underline{x}_{\rm sys}= (0, 0, 1, 0, 0, 1)$.
$\underline{u} = (0, 1, 0) \ \Rightarrow \ \underline{x}_{\rm sys} = (0, 1, 0, 1, 1, 0)$.

5

Which parity bits has the systematic code  $\underline{x}_{\rm sys} = (u_{1}, u_{2}, u_{3}, p_{1}, p_{2}, p_{3})$?

$p_{1} = u_{1} \oplus u_{2},$
$p_{2} = u_{2} \oplus u_{3},$
$p_{3} = u_{1} \oplus u_{3}.$


Solution

(1)  The given code $\mathcal{C}$ is characterized by the following parameters:

  • Number of bits of the code words:  $\underline{n = 6}$,
  • Number of bits of information words:  $\underline{k = 3}$,
  • Number of parity bit equations:  $\underline{m = n - k = 3}$,
  • Code rate:  $R = k/n = 3/6 \Rightarrow \underline{R = 0.5}$,
  • Number of code words (code cardinality):  $|\mathcal{C}| = 2^k \Rightarrow \underline{|C| = 8}$,
  • minimum Hamming distance (see table):  $\underline{d}_{\rm min} \underline{= 3}$.


(2)  Correct is $\underline{\rm YES}$:

  • According to the singleton bound $d_{\rm min} ≤ n - k + 1$ holds. With $n = 6$ and $k = 3$ one obtains $d_{\rm min} ≤ 4$.
  • It is thus quite possible to construct a (6, 3) block code with larger minimal distance. How such a code looks, was kindly not asked.


The minimum distance of all Hamming codes is $d_{\rm min} = 3$, and only the special case with $n = 3$ and $k = 1$ reaches the limit. In contrast, the maximum reach according to the Singleton bound:

  • all repetition codes (RC) because $k = 1$ and $d_{\rm min} = n$; this includes the (3, 1) Hamming code, which is known to be identical to RC (3, 1),


(3)  Correct are the solutions 2 and 3:

  • If we swap rows in the generator matrix $\boldsymbol {\rm G}$, we arrive at an identical code $\mathcal{C}'$. That is, the codes $\mathcal{C}$ and $\mathcal{C}'$ contain the exact same code words.
  • For example, after cyclic row swapping $2 \rightarrow 1, 3 \rightarrow 2$, and $1 \rightarrow 3$, one obtains the new matrix
$${ \boldsymbol{\rm G}}' = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • The first and the last row of the new matrix already comply with the requirements of a systematic code, namely that its generator matrix ${ \boldsymbol{\rm G}_{\rm sys}}$ must start with a diagonal matrix.
  • Replacing row 2 by the modulo 2 sum of rows 2 and 3, we get:
$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • This systematic code contains exactly the same codewords as the codes $\mathcal{C}$ and $\mathcal{C}'$.


(4)  Correct are the solutions 1 and 2:

  • Applying the equation $\underline{x}_{\rm sys} = \underline{u} \cdot \boldsymbol{\rm G}_{\rm sys}$ to the above examples, we see that the first two statements are correct, but not the last one.
  • Without calculation one comes to the same result, if one considers that
  • the systematic codeword $\underline{x}_{\rm sys}$ must start with $\underline{u}$,
  • the code $\mathcal{C}_{\rm sys}$ contains the same codewords as the given code \mathcal{C}.
  • For $\underline{u} = (0, 1, 0)$, the code word is thus $(0, 1, 0, ?, ?, ?)$. A comparison with the code table of $\mathcal{C}$ on the information page leads to $\underline{x}_{\rm sys} = (0, 1, 0, 1, 0, 1)$.


(5)  Only statement 1 is correct. The statements for $p_{2}$ and $p_{3}$, on the other hand, are exactly reversed.

  • With systematic coding, the following relationship exists between the generator matrix and the parity-check matrix:
$${ \boldsymbol{\rm G}} =\left({ \boldsymbol{\rm I}}_k \: ; \:{ \boldsymbol{\rm P}} \right) \hspace{0.3cm}\Leftrightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} =\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$
Chart of parity-check equations
  • Applied to the current example, we obtain thus:
$${ \boldsymbol{\rm G}}_{\rm sys} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{\rm sys} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

This results in parity-check equations (see graph):

$$u_1 \oplus u_2 \oplus p_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_1 = u_1 \oplus u_2 \hspace{0.05cm},$$
$$ u_1 \oplus u_3 \oplus p_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_2 = u_1 \oplus u_3 \hspace{0.05cm},$$
$$ u_2 \oplus u_3 \oplus p_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p_3 = u_2 \oplus u_3 \hspace{0.05cm}.$$