Difference between revisions of "Aufgaben:Exercise 1.11Z: Syndrome Decoding again"

From LNTwww
Line 3: Line 3:
 
[[File:P_ID2399__KC_Z_1_10.png|right|frame|Diagram: Parity-check equations]]
 
[[File:P_ID2399__KC_Z_1_10.png|right|frame|Diagram: Parity-check equations]]
  
The same constellation is considered as in  [[Aufgaben:Exercise_1.11:_Syndrome_Decoding|Exercise 1.11]], namely the decoding of a  $(7, 4, 3)$ Hamming code with the parity-check matrix
+
The same constellation is considered as in  [[Aufgaben:Exercise_1.11:_Syndrome_Decoding|"Exercise 1.11"]], namely the decoding of a  $(7, 4, 3)$ Hamming code with the parity-check matrix
  
 
:$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
Line 11: Line 11:
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$
  
In  [[Channel_Coding/Decoding_of_Linear_Block_Codes#Principle_of_syndrome_decoding|Syndrome decoding]]  one forms from the received vector  $\underline{y}$  the syndrome  $\underline{s}$  according to the equation
+
In  [[Channel_Coding/Decoding_of_Linear_Block_Codes#Principle_of_syndrome_decoding|"syndrome decoding"]]  one forms from the received vector  $\underline{y}$  the syndrome  $\underline{s}$  according to the equation
  
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
Line 26: Line 26:
  
 
Hints:
 
Hints:
* The exercise belongs to the chapter  [[Channel_Coding/Decoding_of_Linear_Block_Codes|Decoding of Linear Block Codes]].  
+
* The exercise belongs to the chapter  [[Channel_Coding/Decoding_of_Linear_Block_Codes|"Decoding of Linear Block Codes"]].  
* For more information on syndrome decoding, see the specification sheet for  [[Aufgaben:Exercise_1.11:_Syndrome_Decoding|Exercise 1.11]].  
+
* For more information on syndrome decoding, see the specification sheet for  [[Aufgaben:Exercise_1.11:_Syndrome_Decoding|"Exercise 1.11"]].  
 
* The graph illustrates the three parity-check equations corresponding to the parity-check matrix:
 
* The graph illustrates the three parity-check equations corresponding to the parity-check matrix:
 
**first row: red circle,
 
**first row: red circle,

Revision as of 16:27, 14 July 2022

Diagram: Parity-check equations

The same constellation is considered as in  "Exercise 1.11", namely the decoding of a  $(7, 4, 3)$ Hamming code with the parity-check matrix

$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

Accordingly, the generator polynomial is:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$

In  "syndrome decoding"  one forms from the received vector  $\underline{y}$  the syndrome  $\underline{s}$  according to the equation

$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$

With this result, any single error in the codeword can be corrected in the Hamming code under consideration.

  • In the error-free case  $\underline{s} = \underline{s}_{0} = (0, 0, 0)$.
  • But even three transmission errors may result in  $\underline{s}_{0} = (0, 0, 0)$ , so these errors remain undetected.




Hints:

  • The exercise belongs to the chapter  "Decoding of Linear Block Codes".
  • For more information on syndrome decoding, see the specification sheet for  "Exercise 1.11".
  • The graph illustrates the three parity-check equations corresponding to the parity-check matrix:
    • first row: red circle,
    • second row: green circle,
    • third row: blue circle.



Questions

1

Is it a systematic code?

Yes,
No.

2

Received  $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$. Is this a valid codeword?

Yes,
No.

3

What syndrome results with this received word?

$\underline{s} = \underline{s}_{0} = (0, 0, 0),$
$\underline{s} = \underline{s}_{3} = (0, 1, 1),$
$\underline{s} = \underline{s}_{7} = (1, 1, 1).$

4

Which received words lead to the same syndrome as in subtask (3)?

$\underline{y} = (1, 1, 0, 1, 0, 1, 0),$
$\underline{y} = (0, 1, 0, 1, 0, 0, 1),$
$\underline{y} = (0, 1, 1, 0, 1, 0, 1).$


Solution

(1)  The answer is YES, as can be seen from the given parity-check matrix $\mathbf{H}$:

  • This contains a $3×3$ diagonal matrix at the end.
  • The code words are therefore:
$$ \underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$


(2)  With this received vector $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$ all parity-check equations are satisfied:

$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm}.$$

Accordingly, the correct answer is YES.


(3)  It holds $\underline{s} = \underline{y} · \boldsymbol{\rm H}^{\rm T}$:

$$ \underline{s} = \begin{pmatrix} 1 &0 &0 &1 &0 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 0 &0 &0 \end{pmatrix} = \underline{s}_0 \hspace{0.2cm} \Rightarrow\hspace{0.2cm} \hspace{0.15cm} \underline{ \rm Antwort \hspace{0.15cm}1} \hspace{0.05cm}.$$


(4)  One could now for each $\underline{y}$ check the equation $\underline{y} · \boldsymbol{\rm H}^{\rm T} = (0, 0, 0)$. Now here the result shall be obtained in a different way:

  • $\underline{y}= (1, 1, 0, 1, 0, 1, 0)$ differs from $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$ in bit $u_{2}$, which is used only in the first two parity-check equations, but not in the last ⇒ $\underline{s} = \underline{s}_{6} = (1, 1, 0)$.
  • Applying the parity-check equations to $\underline{y} = (0, 1, 0, 1, 0, 0, 1)$, we obtain $\underline{s} = \underline{s}_{0} = (0, 0, 0)$, as evidenced by the following calculation:
$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm}.$$
  • The same result is obtained with the received vector $\underline{y} = (0, 1, 1, 0, 1, 0, 1),$ which differs from the vector $(1, 0, 0, 1, 0, 1, 0)$ in all seven bit positions:
$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 1 \oplus 1 \oplus 0 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm}.$$

So the correct answers are answers 2 and 3.