Processing math: 100%

Difference between revisions of "Aufgaben:Exercise 1.16Z: Bounds for the Gaussian Error Function"

From LNTwww
Line 50: Line 50:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Werte liefern die obere und die untere Schranke für&nbsp; x=4?
+
{What values do the upper and lower bounds for&nbsp; x=4 provide?
 
|type="{}"}
 
|type="{}"}
 
Qo(x=4) =  { 3.346 3% } 105
 
Qo(x=4) =  { 3.346 3% } 105
 
Qu(x=4) =  { 3.137 3% } 105
 
Qu(x=4) =  { 3.137 3% } 105
  
{Welche Aussagen gelten für die Funktionen&nbsp; Qo(x)&nbsp; und&nbsp; Qu(x)?
+
{What statements hold for the functions&nbsp; Qo(x)&nbsp; and&nbsp; Qu(x)?
 
|type="[]"}
 
|type="[]"}
+ Für&nbsp; x2&nbsp; sind die beiden Schranken brauchbar.
+
+ For&nbsp; x2&nbsp; the two bounds are usable.
+ Für&nbsp; x<1&nbsp; ist&nbsp; Qu(x)&nbsp; unbrauchbar&nbsp; (wegen&nbsp; Qu(x)<0).
+
+ For&nbsp; x<1&nbsp; is&nbsp; Qu(x)&nbsp; unusable&nbsp; (because&nbsp; Qu(x)<0).
- Für&nbsp; x<1&nbsp; ist&nbsp; Qo(x)&nbsp; unbrauchbar&nbsp; (wegen&nbsp; Qo(x)>1).
+
- For&nbsp; x<1&nbsp; is&nbsp; Qo(x)&nbsp; unusable&nbsp; (because&nbsp; Qo(x)>1).
  
  
{Um welchen Faktor liegt die Chernoff–Rubin–Schranke oberhalb von&nbsp; Qo(x)?
+
{By what factor is the Chernoff-Rubin bound above&nbsp; Qo(x)?
 
|type="{}"}
 
|type="{}"}
 
QCR(x=2)/Qo(x=2) =  { 5 3% }
 
QCR(x=2)/Qo(x=2) =  { 5 3% }
Line 68: Line 68:
 
QCR(x=6)/Qo(x=6) =  { 15 3% }
 
QCR(x=6)/Qo(x=6) =  { 15 3% }
  
{Bestimmen Sie&nbsp; K&nbsp; so, dass&nbsp; KQCR(x)&nbsp; möglichst nahe bei&nbsp; Q(x)&nbsp; liegt und gleichzeitig&nbsp; Q(x)K·QCR(x)&nbsp; für alle &nbsp;x>0&nbsp; eingehalten wird.
+
{Determine&nbsp; K&nbsp; such that&nbsp; KQCR(x)&nbsp; as close as possible to&nbsp; Q(x)&nbsp; and at the same time&nbsp; Q(x)K·QCR(x)&nbsp; is observed for all &nbsp;x>0&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
K =  { 0.5 3% }
 
K =  { 0.5 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die obere Schranke lautet:
+
'''(1)'''&nbsp; The upper bound is:
  
 
:Qo(x)=12πxex2/2Qo(4)=12π4e83.346105_.
 
:Qo(x)=12πxex2/2Qo(4)=12π4e83.346105_.
 
   
 
   
*Die untere Schranke kann wie folgt umgewandelt werden:
+
The lower bound can be converted as follows:
 
   
 
   
 
:Qu(x)=(11/x2)Qo(x)Qu(4)3.137105_.
 
:Qu(x)=(11/x2)Qo(x)Qu(4)3.137105_.
  
*Die relativen Abweichungen gegenüber dem „echten” Wert Q(4)=3.167·105 sind +5% bzw. 1%.
+
*The relative deviations from the "real" value Q(4)=3.167·105 sind +5% bzw. 1%.
  
  
  
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge  1 und 2</u>:  
+
'''(2)'''&nbsp; Correct are the <u>solutions 1 and 2</u>:  
*Für x=2 wird der tatsächliche Funktionswert ${\rm Q}(x) = 2.275 · 10^{–2}$ begrenzt durch ${\rm Q_{o}}(x) = 2.7 · 10^{–2}$ bzw. ${\rm Q_u}(x) = 2.025 · 10^{–2}$.  
+
*For x=2, the actual function value ${\rm Q}(x) = 2.275 - 10^{-2}$ is bounded by ${\rm Q_{o}}(x) = 2.7 - 10^{-2}$ and ${\rm Q_u}(x) = 2.025 - 10^{-2}$, respectively.  
*Die relativen Abweichungen betragen demzufolge  18.7% bzw. $–11\%.$
+
*The relative deviations are therefore 18.7% and $-11\%,$ respectively.
*Die letzte Aussage ist falsch: &nbsp; Erst für x<0.37 gilt ${\rm Q_o}(x) > 1.$
+
*The last statement is wrong: &nbsp; Only for x<0.37 ${\rm Q_o}(x) > 1$ is valid.
  
  
  
  
'''(3)'''&nbsp; Für den Quotienten aus QCR(x) und Qo(x) gilt nach den vorgegebenen Gleichungen:
+
'''(3)'''&nbsp; For the quotient of QCR(x) and Qo(x), according to the given equations:
  
 
:q(x)=QCR(x)Qo(x)=exp(x2/2)exp(x2/2)/(2πx)=2πx
 
:q(x)=QCR(x)Qo(x)=exp(x2/2)exp(x2/2)/(2πx)=2πx
Line 101: Line 101:
 
:q(x)2.5xq(x=2)=5_,q(x=4)=10_,q(x=6)=15_.
 
:q(x)2.5xq(x=2)=5_,q(x=4)=10_,q(x=6)=15_.
  
*Je größer der Abszissenwert x ist, um so ungenauer wird Q(x) durch QCR(x) angenähert.  
+
*The larger the abscissa value x is, the more inaccurately Q(x) is approximated by QCR(x).  
*Bei Betrachtung der Grafik auf der Angabenseite hat man (hatte ich) den Eindruck, dass QCR(x) sich aus Q(x) durch Verschieben nach unten bzw. Verschieben nach oben ergibt. Das ist aber nur eine optische Täuschung und entspricht nicht dem Sachverhalt.
+
*When looking at the graph on the information page, one has (I had) the impression that QCR(x) results from Q(x) by shifting down or shifting up. But this is only an optical illusion and does not correspond to the facts.
  
  
  
  
'''(4)'''&nbsp; Mit K=0.5_ stimmt die neue Schranke $0.5 · {\rm Q}_{\rm CR}(x)$ für x=0 exakt mit Q(x=0)=0.500 überein.  
+
'''(4)'''&nbsp; With K=0.5_ the new bound $0.5 - {\rm Q}_{\rm CR}(x)$ for x=0 agrees exactly with Q(x=0)=0.500.  
*Für größere Abszissenwerte wird damit auch die Verfälschung $q \approx 1.25 · x$ nur halb so groß.
+
*For larger abscissa values, the corruption $q \approx 1.25 - x$ thus also becomes only half as large.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 20:23, 30 July 2022

Q(x)  and related functions

The probability that a zero mean Gaussian random variable  n  with standard deviation  σ   ⇒   variance  σ2  is greater in amount than a given value  A is equal to

Pr(n>A)=Pr(n<A)=Q(A/σ).

Here is used one of the most important functions for communications engineering (drawn in red in the diagram):  
the  "complementary Gaussian error function"

Q(x)=12π+xeu2/2du.

Q(x) is a monotonically decreasing function with Q(0)=0.5. For very large values of x, Q(x)tends0.


The integral of the Q function is not analytically solvable and is usually given in tabular form. From the literature, however, manageable approximations or bounds for positive x values are known:

  • the upper bound (upper blue curve in adjacent graph, only valid for  x>0):
Qo(x)=12πxex2/2Q(x),
  • the lower bound (lower blue curve in the graph, only valid for  x>1):
Qu(x)=11/x22πxex2/2Q(x),
  • the Chernoff-Rubin bound (green curve in the graph, drawn for  K=1):
QCR(x)=Kex2/2Q(x).

In the exercise it is to be investigated to what extent these bounds can be used as approximations for  Q(x)  and what corruptions result.




Hints:



Questions

1

What values do the upper and lower bounds for  x=4 provide?

Qo(x=4) = 

 105
Qu(x=4) = 

 105

2

What statements hold for the functions  Qo(x)  and  Qu(x)?

For  x2  the two bounds are usable.
For  x<1  is  Qu(x)  unusable  (because  Qu(x)<0).
For  x<1  is  Qo(x)  unusable  (because  Qo(x)>1).

3

By what factor is the Chernoff-Rubin bound above  Qo(x)?

QCR(x=2)/Qo(x=2) = 

QCR(x=4)/Qo(x=4) = 

QCR(x=6)/Qo(x=6) = 

4

Determine  K  such that  KQCR(x)  as close as possible to  Q(x)  and at the same time  Q(x)K·QCR(x)  is observed for all  x>0 .

K = 


Solution

(1)  The upper bound is:

Qo(x)=12πxex2/2Qo(4)=12π4e83.346105_.

The lower bound can be converted as follows:

Qu(x)=(11/x2)Qo(x)Qu(4)3.137105_.
  • The relative deviations from the "real" value Q(4)=3.167·105 sind +5% bzw. 1%.


(2)  Correct are the solutions 1 and 2:

  • For x=2, the actual function value Q(x)=2.275102 is bounded by Qo(x)=2.7102 and Qu(x)=2.025102, respectively.
  • The relative deviations are therefore 18.7% and 11%, respectively.
  • The last statement is wrong:   Only for x<0.37 Qo(x)>1 is valid.



(3)  For the quotient of QCR(x) and Qo(x), according to the given equations:

q(x)=QCR(x)Qo(x)=exp(x2/2)exp(x2/2)/(2πx)=2πx
q(x)2.5xq(x=2)=5_,q(x=4)=10_,q(x=6)=15_.
  • The larger the abscissa value x is, the more inaccurately Q(x) is approximated by QCR(x).
  • When looking at the graph on the information page, one has (I had) the impression that QCR(x) results from Q(x) by shifting down or shifting up. But this is only an optical illusion and does not correspond to the facts.



(4)  With K=0.5_ the new bound 0.5QCR(x) for x=0 agrees exactly with Q(x=0)=0.500.

  • For larger abscissa values, the corruption q1.25x thus also becomes only half as large.