Difference between revisions of "Aufgaben:Exercise 1.17Z: BPSK Channel Capacity"

From LNTwww
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding}}
 
{{quiz-Header|Buchseite=Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding}}
  
[[File:P_ID2413__KC_Z_1_16.png|right|frame|Zur Verdeutlichung der BPSK–Kanalkapazität]]
+
[[File:P_ID2413__KC_Z_1_16.png|right|frame|For clarification of the BPSK channel capacity]]
  
Gemäß dem  [[Channel_Coding/Informationstheoretische_Grenzen_der_Kanalcodierung#Kanalcodierungstheorem_und_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]]  lassen sich Binärsignale über den  [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang|AWGN–Kanal]]  dann und nur dann fehlerfrei übertragen, wenn
+
According to the  [[Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding#Channel_coding_theorem_and_channel_capacity|"channel coding theorem"]]  binary signals can be transmitted error-free over the  [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_Binary_Input|"AWGN channel"]]  if and only if
  
*man einen Kanalcode der Rate  $R = k/n$  verwendet,
+
*one uses a channel code of rate  $R = k/n$ ,
*die Blocklänge  $n$  dieses Codes sehr groß gewählt wird   ⇒   $n → ∞$,
+
*the block length  $n$  of this code is chosen very large   ⇒   $n → ∞$,
*die Rate  $R$  kleiner ist als die für binären Eingang gültige Kanalkapazität  $C_{2}$,
+
*the rate  $R$  is smaller than the channel capacity valid for binary input  $C_{2}$,
*wobei die BPSK–Kanalkapazität  $C_{2}$  vom AWGN–Quotienten  $E_{\rm B}/N_{0}$  abhängt.
+
*where the BPSK channel capacity  $C_{2}$  depends on the AWGN quotient  $E_{\rm B}/N_{0}$ .
  
  
Der zulässige Bereich für die Coderate  $R$  ist in der Grafik grün hinterlegt. Die Grenzkurve  $C_{2}$, gültig für binäre Eingangssignale $($daher der Index  $2)$ und manchmal auch als BPSK–Kanalkapazität bezeichnet (steht für ''Binary Phase Shift Keying''), ist allerdings nicht in mathematisch–geschlossener Form angebbar, sondern das Ergebnis eines Integrals, das nur numerisch ausgewertet werden kann.
+
The permissible range for the code rate  $R$  is highlighted in green in the graph. The limit curve  $C_{2}$, valid for binary input signals $($therefore the index  $2)$ and sometimes also referred to as BPSK channel capacity (stands for ''Binary Phase Shift Keying''), however, cannot be specified in mathematically closed form, but is the result of an integral that can only be evaluated numerically.
  
Als blaue Kurve ist die Kanalkapazität  $C$  eingetragen, wenn man beliebige reelle Eingangssignale zulässt.  
+
As blue curve the channel capacity  $C$  is entered, if arbitrary real input signals are allowed.  
*Bei mehrstufigen Signalen kann die Rate durchaus auch Werte  $R > 1$  annehmen.  
+
*For multilevel signals the rate may well assume values  $R > 1$ .  
*Für eine Gaußverteilung ergibt sich für die Rate  $R$  das kleinstmögliche  $(E_{\rm B}/N_{0})_{\rm min}$  gemäß der Gleichung
+
*For a Gaussian distribution the rate  $R$  is the smallest possible  $(E_{\rm B}/N_{0})_{\rm min}$  according to the equation
 
   
 
   
 
:$$\left (E_{\rm B}/N_0 \right)_{\rm min} = \frac{2^{2R}-1}{2R}\hspace{0.05cm}.$$
 
:$$\left (E_{\rm B}/N_0 \right)_{\rm min} = \frac{2^{2R}-1}{2R}\hspace{0.05cm}.$$
  
Im Umkehrschluss ist die Rate  $R$  für den gegebenen AWGN–Quotienten  $E_{\rm B}/N_{0}$  nach oben begrenzt:  
+
Conversely, the rate  $R$  for the given AWGN quotient  $E_{\rm B}/N_{0}$  is upper bounded:  
*Die gerade noch zulässige Coderate  $R_{\rm max}$  bei gegebenem Kanal  $(E_{\rm B}/N_{0} = \rm const.)$  bezeichnen wir als die Kanalkapazität  $C$.  
+
*The just allowable code rate  $R_{\rm max}$  for a given channel  $(E_{\rm B}/N_{0} = \rm const.)$  we refer to as the channel capacity  $C$.  
*Für  $E_{\rm B}/N_{0} = 1     10 · \ \lg {E_{\rm B}/N_0} = 0 {\rm dB}$  erhält man beispielsweise  $C = 0.5$.  
+
*For  $E_{\rm B}/N_{0} = 1 ⇒ 10 - \ \lg {E_{\rm B}/N_0} = 0 {\rm dB}$  we obtain, for example  $C = 0.5$.  
*Das heißt:   Auch bei bestmöglicher Amplitudenverteilung des reellen Eingangssignals darf die Coderate den Wert  $R = 0.5$  nicht überschreiten.  
+
*This means:   Even with the best possible amplitude distribution of the real input signal, the code rate must not exceed  $R = 0.5$ .  
*Bei binärem Eingang ergibt sich ein etwas kleinerer Wert gemäß  $C_{2}.$
+
*For binary input, a slightly smaller value results according to  $C_{2}.$
  
  
In dieser Aufgabe soll versucht werden, den grafisch vorgegebenen Verlauf der Kanalkapazität  $C_{2}$  durch eine Exponentialfunktion anzunähern:
+
In this exercise, try to approximate the graphically given channel capacitance  $C_{2}$  by an exponential function:
  
*Verwenden Sie für die Abszisse die Hilfsvariable (siehe Grafik)
+
*For the abscissa, use the auxiliary variable (see graph)
  
 
:$$x = \frac {x_0 + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}\hspace{0.05cm}.$$  
 
:$$x = \frac {x_0 + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}\hspace{0.05cm}.$$  
  
:Das heißt:   $x$  ist ohne Einheit; auf die Pseudo–Einheit „$\rm dB$” wird verzichtet.
+
:That is,   $x$  is without unit; the pseudo unit "$\rm dB$" is omitted.
  
*Berücksichtigen Sie, dass für ein kleines  $E_{\rm B}/N_{0}$  die Näherung  $C_{2} \approx C$  gültig ist (siehe Grafik), woraus der Parameter  $x_{0}$  bestimmt werden kann.
+
*Consider that for a small  $E_{\rm B}/N_{0}$  the approximation  $C_{2} \approx C$  is valid (see graph), from which the parameter  $x_{0}$  can be determined.
  
*Setzen Sie für  $C_{2}\hspace{0.01cm}' = 1 - {\rm e}^{–a\hspace{0.05cm} · \hspace{0.05cm}x}$  an und bestimmen Sie den Parameter  $a$  aus der gestrichelt eingezeichneten Tangente derart, dass  $C_{2}\hspace{0.01cm} ' \approx C$  gilt.
+
*Set for  $C_{2}\hspace{0.01cm}' = 1 - {\rm e}^{-a\hspace{0.05cm} · \hspace{0.05cm}x}$  and determine the parameter  $a$  from the dashed tangent such that  $C_{2}\hspace{0.01cm} ' \approx C$  holds.
  
  
Line 44: Line 44:
  
  
''Hinweise:''
+
Hints:  
* Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Informationstheoretische_Grenzen_der_Kanalcodierung|Informationstheoretische Grenzen der Kanalcodierung]]. Sie ergänzt die  [[Aufgaben:Aufgabe_1.17:_Zum_Kanalcodierungstheorem|Aufgabe 1.17]].  
+
* The exercise belongs to the chapter  [[Channel_Coding/Information_Theoretical_Limits_of_Channel_Coding|"Information Theoretical Limits of Channel Coding"]]. It complements the  [[Aufgaben:Exercise_1.17:_About_the_Channel_Coding_Theorem|"Exercise 1.17"]].  
* Auf die Pseudo–Einheit „bit/Kanalzugriff” der Kanalkapazität wird in diesen Aufgaben verzichtet.
+
* The "bit/channel access" pseudo-unit of channel capacity is omitted in these exercises.
 
   
 
   
  
Line 52: Line 52:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie aus dem Grenzwert für&nbsp; $C → 0$&nbsp; den Kurvenparameter&nbsp; $x_{0}$?
+
{Calculate from the limit for&nbsp; $C → 0$&nbsp; the curve parameter&nbsp; $x_{0}$?
 
|type="{}"}
 
|type="{}"}
 
$x_{0} \ = \ $ { 1.6 3% }$\ \rm dB$
 
$x_{0} \ = \ $ { 1.6 3% }$\ \rm dB$
  
{Approximieren Sie&nbsp; $C_{2}(x)$&nbsp; durch&nbsp; $C_{2}\hspace{0.01cm}'(x) = 1 -{\rm e}^{-a\hspace{0.05cm} · \hspace{0.05cm}x}$. Wie groß ist&nbsp; $a$?
+
{Approximate&nbsp; $C_{2}(x)$&nbsp; by&nbsp; $C_{2}\hspace{0.01cm}'(x) = 1 -{\rm e}^{-a\hspace{0.05cm} · \hspace{0.05cm}x}$. What is the value of&nbsp; $a$?
 
|type="{}"}
 
|type="{}"}
 
$a \ = \ $ { 0.4 3% }
 
$a \ = \ $ { 0.4 3% }
  
{Welche Kanalkapazität&nbsp; $C_{2}\hspace{0.01cm}'$&nbsp; ergibt sich nach dieser Näherung für&nbsp; $E_{\rm B} = N_{0}$ &nbsp; &rArr; &nbsp; $10 · \lg {E_{\rm B} / N_0} = 0 \ {\rm dB}$?
+
{What channel capacity&nbsp; $C_{2}\hspace{0.01cm}'$&nbsp; results from this approximation for&nbsp; $E_{\rm B} = N_{0}$ &nbsp; &rArr; &nbsp; $10 · \lg {E_{\rm B} / N_0} = 0 \ {\rm dB}$?
 
|type="{}"}
 
|type="{}"}
 
$10  ·  \lg {E_{\rm B} / N_0} = 0 \ {\rm dB} \text{:}  \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $ { 0.47 3% }
 
$10  ·  \lg {E_{\rm B} / N_0} = 0 \ {\rm dB} \text{:}  \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $ { 0.47 3% }
  
{Berechnen Sie auch die Kanalkapazitätsnäherung für folgende Werte:
+
{Calculate also the channel capacity approximation for the following values:
 
|type="{}"}
 
|type="{}"}
 
$10  ·  \lg {E_{\rm B} / N_0} = 2 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $ { 0.76 3% }
 
$10  ·  \lg {E_{\rm B} / N_0} = 2 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $ { 0.76 3% }
Line 74: Line 74:
  
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Im unteren&nbsp; $E_{\rm B} /N_{0}$–Bereich laufen die Kapazitätskurven
+
'''(1)'''&nbsp; In the lower&nbsp; $E_{\rm B} /N_{0}$ range, the capacity curves
*$C_{2}$&nbsp; (gültig für binären Eingang, zum Beispiel BPSK) und
+
*$C_{2}$&nbsp; (valid for binary input, for example BPSK) and
*$C$&nbsp; (gültig für analogen reellwertigen Eingang)
+
*$C$&nbsp; (valid for analog real-valued input).
  
  
zusammen. Für eine gegebene Rate&nbsp; $R$&nbsp; muss&nbsp; $E_{\rm B}/N_{0}$&nbsp; größer sein als&nbsp; $(2^{2R} 1)/2R.$  
+
converge. For a given rate&nbsp; $R$&nbsp; $E_{\rm B}/N_{0}$&nbsp; must be greater than&nbsp; $(2^{2R} - 1)/2R.$  
  
Der Grenzübergang für&nbsp; $R → 0$&nbsp; liefert die absolute Shannon–Grenze, ab der eine fehlerfreie Übertragung nicht mehr möglich ist:
+
The limit transition for&nbsp; $R → 0$&nbsp; provides the absolute Shannon limit above which error-free transmission is no longer possible:
  
 
:$${\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] = \lim_{R \rightarrow 0}\hspace{0.1cm} \frac{2^{2R}-1}{2R} = {\rm ln}\hspace{0.1cm}2 \approx 0.693\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$${\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] = \lim_{R \rightarrow 0}\hspace{0.1cm} \frac{2^{2R}-1}{2R} = {\rm ln}\hspace{0.1cm}2 \approx 0.693\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Line 90: Line 90:
  
  
'''(2)'''&nbsp; Aus der Grafik auf der Angabenseite lässt sich die Tangentensteigerung im Nullpunkt abschätzen:
+
'''(2)'''&nbsp; The tangent increase at the zero point can be estimated from the graph on the data page:
 
   
 
   
 
:$$\frac{{\rm d}C_2}{{\rm d}x} (x=0) = \frac{1.6 + 1.5}{1.25} =2.48 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} a = \frac{1}{2.48} \hspace{0.15cm} \underline{\approx 0.4}\hspace{0.05cm}.$$
 
:$$\frac{{\rm d}C_2}{{\rm d}x} (x=0) = \frac{1.6 + 1.5}{1.25} =2.48 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} a = \frac{1}{2.48} \hspace{0.15cm} \underline{\approx 0.4}\hspace{0.05cm}.$$
  
Damit lautet die Näherung für die BPSK–Kanalkapazität in Abhängigkeit des Abszissenwertes&nbsp; $x$:
+
Thus, the approximation for the BPSK channel capacity as a function of the abscissa value&nbsp; $x$ is:
 
   
 
   
:$$C_2' = \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}x} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm}} x > 0, \\{\rm f\ddot{u}r\hspace{0.15cm}} x < 0. \end{array}$$
+
:$$C_2' = \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}x} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm for\hspace{0.15cm}} x > 0, \\{\rm for\hspace{0.15cm}} x < 0. \end{array}$$
  
  
'''(3)'''&nbsp; Aus&nbsp; $E_{\rm B} = N_{0}$&nbsp; folgt&nbsp; $\ 10  ·  \lg {(E_{\rm B} = N_0)} = 0 \ {\rm dB}$ sowie $x = 1.6$:
+
'''(3)'''&nbsp; From&nbsp; $E_{\rm B} = N_{0}$&nbsp; follows&nbsp; $\ 10  ·  \lg {(E_{\rm B} = N_0)} = 0 \ {\rm dB}$ and $x = 1.6$:
 
   
 
   
 
:$$C_2\hspace{0.01cm}' = 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}1.6}\hspace{0.15cm}\underline{\approx 0.47}\hspace{0.05cm}.$$
 
:$$C_2\hspace{0.01cm}' = 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}1.6}\hspace{0.15cm}\underline{\approx 0.47}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Die entsprechenden Zahlenwerte lauten:
+
'''(4)'''&nbsp; The corresponding numerical values are:
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{2 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}3.6}\hspace{0.15cm}\underline{\approx 0.76}$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{2 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}3.6}\hspace{0.15cm}\underline{\approx 0.76}$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{4 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}5.6}\hspace{0.15cm}\underline{\approx 0.89}$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{4 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}5.6}\hspace{0.15cm}\underline{\approx 0.89}$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}7.6}\hspace{0.15cm}\underline{\approx 0.95}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}7.6}\hspace{0.15cm}\underline{\approx 0.95}.$$
  
Die so angenäherten Werte $C_{2}\hspace{0.01cm}'$ der Kanalkapazität für binären Eingang sind etwas zu klein.  
+
The values $C_{2}\hspace{0.01cm}'$ of the channel capacity for binary input approximated in this way are somewhat too small.  
  
Aus der Grafik auf der Angabenseite können die genauen Werte $C_{2}$ abgeschätzt werden:
+
From the graph on the information page the exact values $C_{2}$ can be estimated:
 
   
 
   
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 =\text{2 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.78}\hspace{0.05cm},$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 =\text{2 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.78}\hspace{0.05cm},$$
Line 117: Line 117:
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.99}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.99}\hspace{0.05cm}.$$
  
Ab etwa&nbsp; $\ 10  ·  \lg {(E_{\rm B} / N_0)} = 8 \ {\rm dB}$&nbsp;  gilt innerhalb der Zeichengenauigkeit&nbsp; $C_{2}\hspace{0.01cm}'= C_{2} = 1$&nbsp; (bit/Kanalzugriff).
+
Ab etwa&nbsp; $\ 10  ·  \lg {(E_{\rm B} / N_0)} = 8 \ {\rm dB}$&nbsp;  gilt innerhalb der Zeichengenauigkeit&nbsp; $C_{2}\hspace{0.01cm}'= C_{2} = 1$&nbsp; (bit/channel use).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 16:17, 16 August 2022

For clarification of the BPSK channel capacity

According to the  "channel coding theorem"  binary signals can be transmitted error-free over the  "AWGN channel"  if and only if

  • one uses a channel code of rate  $R = k/n$ ,
  • the block length  $n$  of this code is chosen very large   ⇒   $n → ∞$,
  • the rate  $R$  is smaller than the channel capacity valid for binary input  $C_{2}$,
  • where the BPSK channel capacity  $C_{2}$  depends on the AWGN quotient  $E_{\rm B}/N_{0}$ .


The permissible range for the code rate  $R$  is highlighted in green in the graph. The limit curve  $C_{2}$, valid for binary input signals $($therefore the index  $2)$ and sometimes also referred to as BPSK channel capacity (stands for Binary Phase Shift Keying), however, cannot be specified in mathematically closed form, but is the result of an integral that can only be evaluated numerically.

As blue curve the channel capacity  $C$  is entered, if arbitrary real input signals are allowed.

  • For multilevel signals the rate may well assume values  $R > 1$ .
  • For a Gaussian distribution the rate  $R$  is the smallest possible  $(E_{\rm B}/N_{0})_{\rm min}$  according to the equation
$$\left (E_{\rm B}/N_0 \right)_{\rm min} = \frac{2^{2R}-1}{2R}\hspace{0.05cm}.$$

Conversely, the rate  $R$  for the given AWGN quotient  $E_{\rm B}/N_{0}$  is upper bounded:

  • The just allowable code rate  $R_{\rm max}$  for a given channel  $(E_{\rm B}/N_{0} = \rm const.)$  we refer to as the channel capacity  $C$.
  • For  $E_{\rm B}/N_{0} = 1 ⇒ 10 - \ \lg {E_{\rm B}/N_0} = 0 {\rm dB}$  we obtain, for example  $C = 0.5$.
  • This means:   Even with the best possible amplitude distribution of the real input signal, the code rate must not exceed  $R = 0.5$ .
  • For binary input, a slightly smaller value results according to  $C_{2}.$


In this exercise, try to approximate the graphically given channel capacitance  $C_{2}$  by an exponential function:

  • For the abscissa, use the auxiliary variable (see graph)
$$x = \frac {x_0 + 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 }{1\,{\rm dB}}\hspace{0.05cm}.$$
That is,   $x$  is without unit; the pseudo unit "$\rm dB$" is omitted.
  • Consider that for a small  $E_{\rm B}/N_{0}$  the approximation  $C_{2} \approx C$  is valid (see graph), from which the parameter  $x_{0}$  can be determined.
  • Set for  $C_{2}\hspace{0.01cm}' = 1 - {\rm e}^{-a\hspace{0.05cm} · \hspace{0.05cm}x}$  and determine the parameter  $a$  from the dashed tangent such that  $C_{2}\hspace{0.01cm} ' \approx C$  holds.




Hints:



Questions

1

Calculate from the limit for  $C → 0$  the curve parameter  $x_{0}$?

$x_{0} \ = \ $

$\ \rm dB$

2

Approximate  $C_{2}(x)$  by  $C_{2}\hspace{0.01cm}'(x) = 1 -{\rm e}^{-a\hspace{0.05cm} · \hspace{0.05cm}x}$. What is the value of  $a$?

$a \ = \ $

3

What channel capacity  $C_{2}\hspace{0.01cm}'$  results from this approximation for  $E_{\rm B} = N_{0}$   ⇒   $10 · \lg {E_{\rm B} / N_0} = 0 \ {\rm dB}$?

$10 · \lg {E_{\rm B} / N_0} = 0 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $

4

Calculate also the channel capacity approximation for the following values:

$10 · \lg {E_{\rm B} / N_0} = 2 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $

$10 · \lg {E_{\rm B} / N_0} = 4 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $

$10 · \lg {E_{\rm B} / N_0} = 6 \ {\rm dB} \text{:} \hspace{0.4cm} \ C_{2}\hspace{0.01cm}' \ = \ $


Solution

(1)  In the lower  $E_{\rm B} /N_{0}$ range, the capacity curves

  • $C_{2}$  (valid for binary input, for example BPSK) and
  • $C$  (valid for analog real-valued input).


converge. For a given rate  $R$  $E_{\rm B}/N_{0}$  must be greater than  $(2^{2R} - 1)/2R.$

The limit transition for  $R → 0$  provides the absolute Shannon limit above which error-free transmission is no longer possible:

$${\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] = \lim_{R \rightarrow 0}\hspace{0.1cm} \frac{2^{2R}-1}{2R} = {\rm ln}\hspace{0.1cm}2 \approx 0.693\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} {\rm Min}\hspace{0.1cm}\left [E_{\rm B}/N_0 \right] \approx -1.6 \,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_0 \hspace{0.15cm} \underline{= 1.6 \,{\rm dB}}\hspace{0.05cm}.$$


(2)  The tangent increase at the zero point can be estimated from the graph on the data page:

$$\frac{{\rm d}C_2}{{\rm d}x} (x=0) = \frac{1.6 + 1.5}{1.25} =2.48 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} a = \frac{1}{2.48} \hspace{0.15cm} \underline{\approx 0.4}\hspace{0.05cm}.$$

Thus, the approximation for the BPSK channel capacity as a function of the abscissa value  $x$ is:

$$C_2' = \hspace{0.15cm} \left\{ \begin{array}{c} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}x} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm for\hspace{0.15cm}} x > 0, \\{\rm for\hspace{0.15cm}} x < 0. \end{array}$$


(3)  From  $E_{\rm B} = N_{0}$  follows  $\ 10 · \lg {(E_{\rm B} = N_0)} = 0 \ {\rm dB}$ and $x = 1.6$:

$$C_2\hspace{0.01cm}' = 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}1.6}\hspace{0.15cm}\underline{\approx 0.47}\hspace{0.05cm}.$$


(4)  The corresponding numerical values are:

$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{2 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}3.6}\hspace{0.15cm}\underline{\approx 0.76}$$
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{4 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}5.6}\hspace{0.15cm}\underline{\approx 0.89}$$
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2\hspace{0.01cm}' \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm e}^{- 0.4 \hspace{0.05cm}\cdot \hspace{0.05cm}7.6}\hspace{0.15cm}\underline{\approx 0.95}.$$

The values $C_{2}\hspace{0.01cm}'$ of the channel capacity for binary input approximated in this way are somewhat too small.

From the graph on the information page the exact values $C_{2}$ can be estimated:

$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 =\text{2 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.78}\hspace{0.05cm},$$
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{4 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.94}\hspace{0.05cm},$$
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = \text{6 dB:} \hspace{0.3cm} C_2 \hspace{-0.15cm}\ \approx \ \hspace{-0.15cm} {0.99}\hspace{0.05cm}.$$

Ab etwa  $\ 10 · \lg {(E_{\rm B} / N_0)} = 8 \ {\rm dB}$  gilt innerhalb der Zeichengenauigkeit  $C_{2}\hspace{0.01cm}'= C_{2} = 1$  (bit/channel use).