Difference between revisions of "Aufgaben:Exercise 4.14Z: 4-QAM and 4-PSK"

From LNTwww
Line 9: Line 9:
 
:$$ p_{\rm UB}  =  2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ]  \ge p_{\rm S} \hspace{0.05cm}.$$
 
:$$ p_{\rm UB}  =  2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ]  \ge p_{\rm S} \hspace{0.05cm}.$$
  
Bei beiden Verfahren hat jeder Signalraumpunkt die genau gleiche Energie, nämlich  $E_{\rm S}$.
+
In both methods, each signal space point has exactly the same energy, namely  $E_{\rm S}$.
  
Aus der Grafik erkennt man, dass für den Sonderfall  $M = 4$  die beiden Modulationsverfahren eigentlich identisch sein müssten, was aus den obigen Gleichungen nicht direkt hervorgeht.
+
From the graph, one can see that for the special case  $M = 4$,  the two modulation processes should actually be identical, which is not directly evident from the above equations.
  
Die 4–PSK ist hier mit dem Phasenoffset  $\phi_{\rm off} = 0$  dargestellt. Mit einem allgemeinen Phasenoffset lauten dagegen die Inphase– und Quadraturanteile der Signalraumpunkte allgemein:  $(i = 0, \ ... \ , M = 1)$:
+
The 4–PSK is shown here with the phase offset  $\phi_{\rm off} = 0$.  With a general phase offset, on the other hand, the in-phase and quadrature components of the signal space points are generally:  $(i = 0, \ ... \ , M = 1)$:
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
Line 21: Line 21:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum Kapitel   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation| "Carrier Frequency Systems with Coherent Demodulation"]].  
+
* The exercise belongs to the chapter   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation| "Carrier Frequency Systems with Coherent Demodulation"]].  
* Bezug genommen wird insbesondere auf die Seiten  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29| Quadraturamplitudenmodulation]]  und   [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Mehrstufiges_Phase.E2.80.93Shift_Keying_.28M.E2.80.93PSK.29|Mehrstufige Phasenmodulation]].
+
* Reference is made in particular to the sections  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"Quadrature amplitude modulation"]]  and   [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Multi-level_phase.E2.80.93shift_keying_.28M.E2.80.93PSK.29|"Multi-level phase modulation"]].
* In der obigen Grafik rot eingezeichnet ist die Gray–Zuordnung der Symbole zu Bitdupeln.
+
* In the above diagram the Gray mapping of the symbols to bit-duples is shown in red.
*Alle Ergebnisse der Aufgabe können mit dem interaktiven Applet [[Applets:MPSK_%26_Union-Bound(Applet)|M–stufiges Phase Shift Keying und Union Bound]] per Simulation überprüft werden.
+
* All results of the exercise can be checked by simulation with the interactive applet [[Applets:MPSK_%26_Union-Bound(Applet)|"M–level Phase Shift Keying and Union Bound"]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Für welchen Phasenoffset stimmen die 4&ndash;QAM und die 4&ndash;PSK exakt überein?
+
{For which phase offset do the 4&ndash;QAM and the 4&ndash;PSK match exactly?
 
|type="{}"}
 
|type="{}"}
$\phi_{\rm off}\ = \ $  { 45 3% } $\ \rm Grad$
+
$\phi_{\rm off}\ = \ $  { 45 3% } $\ \rm degree$
  
{Wie lautet die obere Schranke&nbsp; $($Union&ndash;Bound,&nbsp; $p_{\rm UB} &#8805; p_{\rm S})$&nbsp; für die '''4&ndash;PSK'''?
+
{What is the upper bound&nbsp; $($Union Bound,&nbsp; $p_{\rm UB} &#8805; p_{\rm S})$&nbsp; for the '''4&ndash;PSK'''?
 
|type="[]"}
 
|type="[]"}
 
- $p_{\rm UB} = 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
 
- $p_{\rm UB} = 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
Line 42: Line 42:
 
- $p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.
 
- $p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.
  
{Geben Sie eine nähere obere Schranke für die '''4&ndash;QAM''' an.
+
{Specify a closer upper bound for the '''4&ndash;QAM'''.
 
|type="[]"}
 
|type="[]"}
 
- $p_{\rm S} &#8804; 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
 
- $p_{\rm S} &#8804; 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
Line 48: Line 48:
 
- $p_{\rm S} &#8804; 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.
 
- $p_{\rm S} &#8804; 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.
  
{Wie lautet die Bitfehlerwahrscheinlichkeitsschranke für die 4&ndash;QAM, Graycodierung vorausgesetzt?
+
{What is the bit error probability bound for the 4&ndash;QAM, assuming Gray coding?
 
|type="[]"}
 
|type="[]"}
 
- $p_{\rm B} &#8804; 2 \cdot {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
 
- $p_{\rm B} &#8804; 2 \cdot {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
Line 55: Line 55:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit $M = 4$ lauten die Signalraumpunkte $\boldsymbol{s}_i = (s_{\rm I \it i}, s_{\rm Q \it i})$ der digitalen Phasenmodulation ($i = 0, \ \text{...} \ , 3$):
+
'''(1)'''&nbsp; With $M = 4$, the signal space points are $\boldsymbol{s}_i = (s_{\rm I \it i}, s_{\rm Q \it i})$ of digital phase modulation ($i = 0, \ \text{...} \ , 3$):
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
  
Mit $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$ ergeben sich genau die Signalraumpunkte der 4&ndash;QAM:
+
With $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$, we obtain exactly the signal space points of the 4&ndash;QAM:
 
:$$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2})
 
:$$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2})
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>: Für die 4&ndash;PSK ergibt sich mit der vorne angegebenen Gleichung:
+
'''(2)'''&nbsp; <u>Solution 2</u> is correct: For the 4&ndash;PSK, the equation given earlier gives:
 
:$$p_{\rm S} \le  p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] =  2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]=
 
:$$p_{\rm S} \le  p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] =  2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]=
 
  2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
  2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:  
+
'''(3)'''&nbsp; <u>Solution 2</u> is correct:  
*Die 4&ndash;QAM ist mit der 4&ndash;PSK identisch (hinsichtlich Fehlerwahrscheinlichkeit sogar unabhängig vom Phasenoffset).  
+
*The 4&ndash;QAM is identical with the 4&ndash;PSK (regarding error probability even independent of the phase offset).
*Der Lösungsvorschlag 1 gibt dagegen die Union Bound der $M$&ndash;QAM allgemein an, wobei $M = 4$ eingesetzt ist.  
+
*Solution 1, on the other hand, gives the Union Bound of the $M$&ndash;QAM in general, where $M = 4$ is used.
*Da es aber bei 4&ndash;QAM keine inneren Symbole gibt, ist diese Schranke zu pessimistisch.  
+
*However, since there are no inner symbols in 4&ndash;QAM, this bound is too pessimistic.
*Die sich ergebende "Union Bound" ist dann doppelt so groß wie die 4&ndash;PSK&ndash;Schranke.
+
*The resulting "Union Bound" is then twice as large as the 4&ndash;PSK bound.
  
  
  
'''(4)'''&nbsp; Hier ist wiederum der <u>zweite Lösungsvorschlag</u> richtig:  
+
'''(4)'''&nbsp; Here again the <u>second solution</u> is correct:  
*Bei Graycodierung führt jeder Symbolfehler zu einem Bitfehler, wenn man nur benachbarte Regionen betrachtet: &nbsp; $p_{\rm B} \approx p_{\rm S}/2$.  
+
*In Gray coding, each symbol error results in a bit error if only adjacent regions are considered: &nbsp; $p_{\rm B} \approx p_{\rm S}/2$.  
*Außerdem gilt $E_{\rm S} = 2 \ E_{\rm B}$. Daraus folgt:
+
*Furthermore, $E_{\rm S} = 2 \ E_{\rm B}$ is valid. It follows that
 
:$$p_{\rm B} = \frac{p_{\rm S}}{2} \le   
 
:$$p_{\rm B} = \frac{p_{\rm S}}{2} \le   
 
  {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
  {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
*Wie in der Musterlösung zur [[Aufgaben:4.13_Vierstufige_QAM| Aufgabe 4.13]] hergeleitet, gilt sogar exakt:
+
*As derived in the solution to [[Aufgaben:Exercise_4.13:_Four-level_QAM|"Exercise 4.13"]], even exactly:
 
:$$p_{\rm B} =  {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
:$$p_{\rm B} =  {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
*Bei dieser Herleitung wurde verwendet, dass man die 4&ndash;QAM durch zwei orthogonale BPSK&ndash;Modulationen (mit Cosinus&ndash; bzw. Minus&ndash;Sinusträger) darstellen kann.  
+
*In this derivation, it was used that the 4&ndash;QAM can be represented by two orthogonal BPSK modulations (with cosine and minus sinusoidal carriers, respectively).
*Somit ist die Bitfehlerwahrscheinlichkeit der 4&ndash;QAM und damit auch der 4&ndash;PSK in Abhängigkeit von $E_{\rm B}/N_0$ die gleiche wie für BPSK.
+
*Thus, the bit error probability of the 4&ndash;QAM and thus also of the 4&ndash;PSK as a function of $E_{\rm B}/N_0$ is the same as for BPSK.
  
  

Revision as of 20:39, 15 August 2022

Signal space constellation of 4-QAM and 4-PSK

For  "quadrature amplitude modulation"  ($M$–QAM), an upper bound ("Union–Bound")  on the symbol error probability was given in the theory section for  $M ≥ 16$: 

$$ p_{\rm UB} = 4 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ] \ge p_{\rm S} \hspace{0.05cm}.$$

In the theory section, one can also find the "Union–Bound" for  "M–level phase modulation"  (M–PSK)

$$ p_{\rm UB} = 2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ] \ge p_{\rm S} \hspace{0.05cm}.$$

In both methods, each signal space point has exactly the same energy, namely  $E_{\rm S}$.

From the graph, one can see that for the special case  $M = 4$,  the two modulation processes should actually be identical, which is not directly evident from the above equations.

The 4–PSK is shown here with the phase offset  $\phi_{\rm off} = 0$.  With a general phase offset, on the other hand, the in-phase and quadrature components of the signal space points are generally:  $(i = 0, \ ... \ , M = 1)$:

$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$



Notes:



Questions

1

For which phase offset do the 4–QAM and the 4–PSK match exactly?

$\phi_{\rm off}\ = \ $

$\ \rm degree$

2

What is the upper bound  $($Union Bound,  $p_{\rm UB} ≥ p_{\rm S})$  for the 4–PSK?

$p_{\rm UB} = 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.

3

Specify a closer upper bound for the 4–QAM.

$p_{\rm S} ≤ 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm S} ≤ 2 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm S} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.

4

What is the bit error probability bound for the 4–QAM, assuming Gray coding?

$p_{\rm B} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
$p_{\rm B} ≤ {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
$p_{\rm B} ≤ {\rm Q}[\sqrt{E_{\rm B}/N_0}\hspace{0.05cm}]$.


Solution

(1)  With $M = 4$, the signal space points are $\boldsymbol{s}_i = (s_{\rm I \it i}, s_{\rm Q \it i})$ of digital phase modulation ($i = 0, \ \text{...} \ , 3$):

$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$

With $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$, we obtain exactly the signal space points of the 4–QAM:

$$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2}) \hspace{0.05cm}.$$


(2)  Solution 2 is correct: For the 4–PSK, the equation given earlier gives:

$$p_{\rm S} \le p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] = 2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]= 2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$


(3)  Solution 2 is correct:

  • The 4–QAM is identical with the 4–PSK (regarding error probability even independent of the phase offset).
  • Solution 1, on the other hand, gives the Union Bound of the $M$–QAM in general, where $M = 4$ is used.
  • However, since there are no inner symbols in 4–QAM, this bound is too pessimistic.
  • The resulting "Union Bound" is then twice as large as the 4–PSK bound.


(4)  Here again the second solution is correct:

  • In Gray coding, each symbol error results in a bit error if only adjacent regions are considered:   $p_{\rm B} \approx p_{\rm S}/2$.
  • Furthermore, $E_{\rm S} = 2 \ E_{\rm B}$ is valid. It follows that
$$p_{\rm B} = \frac{p_{\rm S}}{2} \le {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
$$p_{\rm B} = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
  • In this derivation, it was used that the 4–QAM can be represented by two orthogonal BPSK modulations (with cosine and minus sinusoidal carriers, respectively).
  • Thus, the bit error probability of the 4–QAM and thus also of the 4–PSK as a function of $E_{\rm B}/N_0$ is the same as for BPSK.