Difference between revisions of "Aufgaben:Exercise 4.14Z: 4-QAM and 4-PSK"

From LNTwww
Line 60: Line 60:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  With $M = 4$, the signal space points are $\boldsymbol{s}_i = (s_{\rm I \it i}, s_{\rm Q \it i})$ of digital phase modulation ($i = 0, \ \text{...} \ , 3$):
+
'''(1)'''  With  $M = 4$,  the signal space points are  $\boldsymbol{s}_i = (s_{\rm I \it i}, s_{\rm Q \it i})$  of digital phase modulation  ($i = 0, \ \text{...} \ , 3$):
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
 
:$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
  
With $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$, we obtain exactly the signal space points of the 4–QAM:
+
*With  $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$,  we obtain exactly the signal space points of the 4–QAM:
 
:$$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2})
 
:$$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2})
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; <u>Solution 2</u> is correct: For the 4&ndash;PSK, the equation given earlier gives:
+
'''(2)'''&nbsp; <u>Solution 2</u>&nbsp; is correct: For the&nbsp; "4&ndash;PSK"&nbsp; holds:
 
:$$p_{\rm S} \le  p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] =  2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]=
 
:$$p_{\rm S} \le  p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] =  2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]=
 
  2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
  2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; <u>Solution 2</u> is correct:  
+
'''(3)'''&nbsp; <u>Solution 2</u>&nbsp; is correct:  
*The 4&ndash;QAM is identical with the 4&ndash;PSK (regarding error probability even independent of the phase offset).
+
*The&nbsp; "4&ndash;QAM"&nbsp; is identical with the&nbsp; "4&ndash;PSK"&nbsp; (regarding error probability even independent of the phase offset).
*Solution 1, on the other hand, gives the Union Bound of the $M$&ndash;QAM in general, where $M = 4$ is used.
 
*However, since there are no inner symbols in 4&ndash;QAM, this bound is too pessimistic.
 
*The resulting "Union Bound" is then twice as large as the 4&ndash;PSK bound.
 
  
 +
*Solution 1,&nbsp; on the other hand,&nbsp; gives the&nbsp; "Union Bound"&nbsp; of the&nbsp; "M&ndash;QAM"&nbsp; in general,&nbsp; where&nbsp; $M = 4$&nbsp; is used.
  
 +
*However,&nbsp; since there are no inner symbols in&nbsp; "4&ndash;QAM",&nbsp; this bound is too pessimistic.
  
'''(4)'''&nbsp; Here again the <u>second solution</u> is correct:  
+
*The resulting&nbsp; "Union Bound"&nbsp; is then twice as large as the 4&ndash;PSK bound.
*In Gray coding, each symbol error results in a bit error if only adjacent regions are considered: &nbsp; $p_{\rm B} \approx p_{\rm S}/2$.  
+
 
*Furthermore, $E_{\rm S} = 2 \ E_{\rm B}$ is valid. It follows that
+
 
 +
 
 +
'''(4)'''&nbsp; Here again the&nbsp; <u>second solution</u>&nbsp; is correct:  
 +
*In Gray coding,&nbsp; each symbol error results in a bit error if only adjacent regions are considered: &nbsp; $p_{\rm B} \approx p_{\rm S}/2$.
 +
 +
*Furthermore,&nbsp; $E_{\rm S} = 2 \ E_{\rm B}$&nbsp; is valid.&nbsp; It follows that
 
:$$p_{\rm B} = \frac{p_{\rm S}}{2} \le   
 
:$$p_{\rm B} = \frac{p_{\rm S}}{2} \le   
 
  {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
  {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
*As derived in the solution to [[Aufgaben:Exercise_4.13:_Four-level_QAM|"Exercise 4.13"]], even exactly:
+
*As derived in the solution to&nbsp; [[Aufgaben:Exercise_4.13:_Four-level_QAM|"Exercise 4.13"]],&nbsp; even exactly:
 
:$$p_{\rm B} =  {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
 
:$$p_{\rm B} =  {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
*In this derivation, it was used that the 4&ndash;QAM can be represented by two orthogonal BPSK modulations (with cosine and minus sinusoidal carriers, respectively).
+
*In this derivation,&nbsp; it was used that the&nbsp; "4&ndash;QAM"&nbsp; can be represented by two orthogonal BPSK modulations&nbsp; (with cosine and minus sinusoidal carriers,&nbsp; respectively).
*Thus, the bit error probability of the 4&ndash;QAM and thus also of the 4&ndash;PSK as a function of $E_{\rm B}/N_0$ is the same as for BPSK.
+
*Thus,&nbsp; the bit error probability of the&nbsp; "4&ndash;QAM"&nbsp; and thus also of the&nbsp; "4&ndash;PSK" as a function of&nbsp; $E_{\rm B}/N_0$&nbsp; is the same as for BPSK.
  
  

Revision as of 16:02, 23 August 2022

Signal space constellation of the  "4-QAM"  and  "4-PSK"

For  "quadrature amplitude modulation"  $\rm (M–QAM)$,  an upper bound  ("Union–Bound")  on the symbol error probability was given in the theory section for  $M ≥ 16$: 

$$ p_{\rm UB} = 4 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ] \ge p_{\rm S} \hspace{0.05cm}.$$

In the theory section,  one can also find the  "Union–Bound" for  "M–level phase modulation"    $\rm (M–PSK)$, 

$$ p_{\rm UB} = 2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \hspace{0.05cm}\right ] \ge p_{\rm S} \hspace{0.05cm}.$$

In both methods,  each signal space point has exactly the same energy,  namely  $E_{\rm S}$.

From the graph,  one can see that for the special case  $M = 4$,  the two modulation processes should actually be identical,  which is not directly evident from the above equations.

The 4–PSK is shown here with the phase offset  $\phi_{\rm off} = 0$.  With a general phase offset,  on the other hand,  the in-phase and quadrature components of the signal space points are generally:  $(i = 0, \ ... \ , M = 1)$:

$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$



Notes:

  • In the above diagram the Gray mapping of the symbols to bit-duples is shown in red.




Questions

1

For which phase offset do the 4–QAM and the 4–PSK match exactly?

$\phi_{\rm off}\ = \ $

$\ \rm degree$

2

What is the upper bound  $($Union Bound,  $p_{\rm UB} ≥ p_{\rm S})$  for the 4–PSK?

$p_{\rm UB} = 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm UB} = 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.

3

Specify a closer upper bound for the 4–QAM.

$p_{\rm S} ≤ 4 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm S} ≤ 2 \cdot {\rm Q}[\sqrt{E_{\rm S}/N_0}\hspace{0.05cm}]$,
$p_{\rm S} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm S}/N_0}\hspace{0.05cm}]$.

4

What is the bit error probability bound for the 4–QAM,  assuming Gray coding?

$p_{\rm B} ≤ 2 \cdot {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
$p_{\rm B} ≤ {\rm Q}[\sqrt{2E_{\rm B}/N_0}\hspace{0.05cm}]$,
$p_{\rm B} ≤ {\rm Q}[\sqrt{E_{\rm B}/N_0}\hspace{0.05cm}]$.


Solution

(1)  With  $M = 4$,  the signal space points are  $\boldsymbol{s}_i = (s_{\rm I \it i}, s_{\rm Q \it i})$  of digital phase modulation  ($i = 0, \ \text{...} \ , 3$):

$$s_{{\rm I}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
$$ s_{{\rm Q}i} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm}.$$
  • With  $\phi_{\rm off} \ \underline {= \pi/2 \ (45^°)}$,  we obtain exactly the signal space points of the 4–QAM:
$$\boldsymbol{ s}_{\rm 0} = (+\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 1} = (-\sqrt{2}, +\sqrt{2})\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm 3} = (-\sqrt{2}, -\sqrt{2})\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm 4} = (+\sqrt{2}, -\sqrt{2}) \hspace{0.05cm}.$$


(2)  Solution 2  is correct: For the  "4–PSK"  holds:

$$p_{\rm S} \le p_{\rm UB} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] = 2 \cdot {\rm Q} \left [ { 1}/{ \sqrt{2}} \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]= 2 \cdot {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$


(3)  Solution 2  is correct:

  • The  "4–QAM"  is identical with the  "4–PSK"  (regarding error probability even independent of the phase offset).
  • Solution 1,  on the other hand,  gives the  "Union Bound"  of the  "M–QAM"  in general,  where  $M = 4$  is used.
  • However,  since there are no inner symbols in  "4–QAM",  this bound is too pessimistic.
  • The resulting  "Union Bound"  is then twice as large as the 4–PSK bound.


(4)  Here again the  second solution  is correct:

  • In Gray coding,  each symbol error results in a bit error if only adjacent regions are considered:   $p_{\rm B} \approx p_{\rm S}/2$.
  • Furthermore,  $E_{\rm S} = 2 \ E_{\rm B}$  is valid.  It follows that
$$p_{\rm B} = \frac{p_{\rm S}}{2} \le {\rm Q} \left [ \sqrt{ { E_{\rm S}}/{ N_0}} \right ] = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
$$p_{\rm B} = {\rm Q} \left [ \sqrt{ { 2E_{\rm B}}/{ N_0}} \right ] \hspace{0.05cm}.$$
  • In this derivation,  it was used that the  "4–QAM"  can be represented by two orthogonal BPSK modulations  (with cosine and minus sinusoidal carriers,  respectively).
  • Thus,  the bit error probability of the  "4–QAM"  and thus also of the  "4–PSK" as a function of  $E_{\rm B}/N_0$  is the same as for BPSK.