Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Channel Coding/Some Basics of Algebra"

From LNTwww
Line 152: Line 152:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
Generalization (without proof for now):
 
Generalization (without proof for now):
*A Galois field&nbsp; GF(q)&nbsp; can be formed in the manner described here as&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_ring| "Ring"]]&nbsp; of integer sizes modulo&nbsp; q&nbsp; only if&nbsp; q&nbsp; is a prime number: &nbsp; <br> &nbsp; &nbsp; q=2,&nbsp; q=3,&nbsp; q=5,&nbsp; q=7,&nbsp; q=11, ...<br>
+
*A Galois field&nbsp; GF(q)&nbsp; can be formed in the manner described here as&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_ring| "ring"]]&nbsp; of integer sizes modulo&nbsp; q&nbsp; only if&nbsp; q&nbsp; is a prime number: &nbsp; <br> &nbsp; &nbsp; q=2,&nbsp; q=3,&nbsp; q=5,&nbsp; q=7,&nbsp; q=11, ...<br>
  
 
*But if the order&nbsp; q&nbsp; can be expressed in the form&nbsp; q=Pm&nbsp; with a prime&nbsp; P&nbsp; and integer&nbsp; m&nbsp;, the Galois field&nbsp; GF(q)&nbsp; can be found via a&nbsp; [[Channel_Coding/Extension_Field#Generalized_Definition_of_an_Extension. C3.B6rpers|extension fields]]&nbsp; find.}}<br>
 
*But if the order&nbsp; q&nbsp; can be expressed in the form&nbsp; q=Pm&nbsp; with a prime&nbsp; P&nbsp; and integer&nbsp; m&nbsp;, the Galois field&nbsp; GF(q)&nbsp; can be found via a&nbsp; [[Channel_Coding/Extension_Field#Generalized_Definition_of_an_Extension. C3.B6rpers|extension fields]]&nbsp; find.}}<br>
Line 235: Line 235:
 
Conclusion:&nbsp;   
 
Conclusion:&nbsp;   
  
Comparing the definitions of&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_group| "group"]],&nbsp; ring (see above), [[Aufgaben:2. 1_Group,_Ring,_Body|"field"]]&nbsp; and&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field| "Galois field"]], we recognize that a Galois field&nbsp; GF(q)
+
Comparing the definitions of&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_group| "group"]],&nbsp; ring (see above), [[Aufgaben:Aufgabe_2.1:_Gruppe,_Ring,_Körper|"field"]]&nbsp; and&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field| "Galois field"]], we recognize that a Galois field&nbsp; GF(q)
 
*is a finite field with&nbsp; q&nbsp; elements,<br>
 
*is a finite field with&nbsp; q&nbsp; elements,<br>
  

Revision as of 14:13, 24 August 2022

# OVERVIEW OF THE SECOND MAIN CHAPTER #


This chapter discusses the Reed-Solomon codes, invented in the early 1960s by  "Irving Stoy Reed"  and  "Gustave Solomon" . Unlike binary block codes, these are based on a Galois field  GF(2m)  with  m>1. So they work with multilevel symbols instead of binary characters (bits).

Specifically, this chapter covers:

  • The basics of linear algebra:   set, group, ring, field, finite field,
  • the definition of extension fields   ⇒   GF(2m)  and the corresponding operations,
  • the meaning of irreducible polynomials and primitive elements,
  • the description and realization possibilities of a Reed-Solomon code,
  • the error correction of such a code at the binary ersaure channel (BEC),
  • the decoding using the Error Locator Polynomial   ⇒   Bounded Distance Decoding (BDD),
  • the block error probability of Reed-Solomon codes and typical applications.



Definition of a Galois field


Before we can turn to the description of Reed–Solomon codes, we need some basic algebraic notions. We begin with the properties of the Galois field  GF(q), named after the Frenchman  Évariste Galois, whose biography is rather unusual for a mathematician.

Definition:  A  Galoisfield  GF(q)  is a  "finite field"  with  q  elements  z0z1,  ... ,  zq1, if the eight statements listed below  (A)  ...  (H)  with respect to addition ("+") and multiplication ("") are true.

  • Addition and multiplication are to be understood here modulo  q .
  • The  order  q  indicates the number of elements of the Galois field

.


Criteria of a Galois field: 

(A)  GF(q)  is closed Closure:

ziGF(q),zjGF(q):(zi+zj)GF(q),(zizj)GF(q).

(B)  There is a neutral element NA with respect to addition, the so-called zero element. \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Identity \ for \ "\hspace{-0.05cm}+\hspace{0.05cm}":

\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + z_j = z_i \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_j = N_{\rm A} = \text{ 0} \hspace{0.05cm}.

\rm (C)  There is a neutral element N_{\rm M} with respect to multiplication, the so-called identity element \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Identity \ for \ "\hspace{-0.05cm}·\hspace{0.05cm}":

\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i \cdot z_j = z_i \hspace{0.3cm}\Rightarrow \hspace{0.3cm} z_j = N_{\rm M} = {1} \hspace{0.05cm}.

\rm (D)  For each  z_i  there exists an additive inverse   {\rm Inv_A}(z_i) \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Inverse \ for \ "\hspace{-0.05cm}+\hspace{0.05cm}":

\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{kurz:}\hspace{0.3cm} {\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}.

\rm (E)  For each  z_i  except the zero element, there exists the multiplicative inverse   {\rm Inv_M}(z_i) \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Inverse \ for \ "\hspace{-0.05cm}\cdot\hspace{0.05cm}":

\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A}, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {1}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{kurz:}\hspace{0.3cm} {\rm Inv_M}(z_i) = z_i^{-1} \hspace{0.05cm}.

\rm (F)  For addition and multiplication the commutative law applies in each case \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Commutative \ Law:

\forall \hspace{0.15cm} z_i,\hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + z_j = z_j + z_i ,\hspace{0.15cm}z_i \cdot z_j = z_j \cdot z_i \hspace{0.05cm}.

\rm (G)  For addition and multiplication, the associative law applies in each case \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Associative \ Law:

\forall \hspace{0.15cm} z_i,\hspace{0.1cm} z_j ,\hspace{0.1cm} z_k \in {\rm GF}(q)\text{:} \hspace{0.25cm}(z_i + z_j) + z_k = z_i + (z_j + z_k ),\hspace{0.15cm}(z_i \cdot z_j) \cdot z_k = z_i \cdot (z_j \cdot z_k ) \hspace{0.05cm}.

\rm (H)  For the combination "addition – multiplication" the distributive law is valid \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Distributive \ Law:

\forall \hspace{0.15cm} z_i,\hspace{0.15cm} z_j ,\hspace{0.15cm} z_k \in {\rm GF}(q)\text{:} \hspace{0.25cm}(z_i + z_j) \cdot z_k = z_i \cdot z_k + z_j \cdot z_k \hspace{0.05cm}.



Examples and properties of Galois fields


We first check that for the binary number set  Z_2 = \{0, 1\}   ⇒   q=2  (valid for the simple binary code) the eight criteria mentioned on the last page are met, so that we can indeed speak of "{\rm GF}(2)". You can see the addition– and multiplication table below:

Z_2 = \{0, 1\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c|cccccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm GF}(2) .

One can see from this representation:

  • Each element of the addition– and multiplication table of  Z_2  is again  z_0 = 0  or  z_0 = 1   ⇒   the criterion  \rm (A)  is satisfied.
  • The set  Z_2  contains the zero element  (\hspace{-0.05cm}N_{\rm A} = z_0 = 0)  and the one element (\hspace{-0.05cm}N_{\rm M} = z_1 = 1)  ⇒   the criteria  \rm (B)  and  \rm (C)  are satisfied.
  • The additive inverses  {\rm Inv_A}(0) = 0  and  {\rm Inv_A}(1) = -1  exist and belong to  Z_2.
  • Similarly, the multiplicative inverse  {\rm Inv_M}(1) = 1  ⇒   criteria  \rm (D)  and  \rm (E)  are satisfied.
  • The validity of the commutative law  \rm (F)  in the set  Z_2  can be recognized by the symmetry with respect to the table diagonals.
  • The criteria  \rm (G)  and  \rm (H)  are also satisfied here  ⇒   all eight criteria are satisfied  ⇒   Z_2 = \rm GF(2).


\text{Example 1:}  The set of numbers  Z_3 = \{0, 1, 2\}   ⇒   q = 3  satisfies all eight criteria and is thus a Galois field  \rm GF(3):

Z_3 = \{0, 1, 2\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c | cccccc} + & 0 & 1 & 2\\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c | cccccc} \cdot & 0 & 1 & 2\\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2& 0 & 2 & 1 \end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm GF}(3) .


\text{Example 2:}  In contrast, the set of numbers  Z_4 = \{0, 1, 2, 3\}   ⇒   q = 4  is not a Galois field.

  • The reason for this is that there is no multiplicative inverse to the element  z_2 = 2  here. For a Galois field it would have to be true:   2 \cdot {\rm Inv_M}(2) = 1.
  • But in the multiplication table there is no entry with "1" in the third row and third column (each valid for the multiplicand  z_2 = 2) .
Z_4 = \{0, 1, 2, 3\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c | cccccc} + & 0 & 1 & 2 & 3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 2 & 3 & 0\\ 2 & 2 & 3 & 0 & 1\\ 3 & 3 & 0 & 1 & 2 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c | cccccc} \cdot& 0 & 1 & 2 & 3\\ \hline 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 1 & 2 & 3\\ 2 & 0 & 2 & 0 & 2\\ 3 & 0 & 3 & 2 & 1 \end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{kein }{\rm GF}(4) .


\text{Generalization (without proof for now):}

  • A Galois field  {\rm GF}(q)  can be formed in the manner described here as  "ring"  of integer sizes modulo  q  only if  q  is a prime number:  
        q = 2q = 3q = 5q = 7q = 11, ...
  • But if the order  q  can be expressed in the form  q = P^m  with a prime  P  and integer  m , the Galois field  {\rm GF}(q)  can be found via a  extension fields  find.


Group, ring, field - basic algebraic concepts


On the first pages, some basic algebraic terms have already been mentioned, without their meanings having been explained in more detail. This is to be made up now in all shortness from view of a communication engineer, whereby we mainly refer to the representation in [Fri96].  [Fri96][1]  und  [KM+08][2] . To summarize:

\text{Definition:}  A  \rm Galois field  {\rm GF}(q) is a field with a finite number  (q)  of elements   ⇒   finite field. Each field is again a special case of a ring, which itself can be represented again as a special case of an abelian group.


Algebraic relations between group, ring and field

The diagram illustrates step by step how the following subordinate sets arise from a set by definition of addition, multiplication and division within this set  \mathcal{M}  :

  • abelian group  \mathcal{G} ,
  • ring  \mathcal{R},
  • field  \mathcal{F},
  • finite field  \mathcal{F}_q  or Galois field  {\rm GF}(q).


On the next two pages, the algebraic terms mentioned here will be discussed in more detail.

  • For understanding the Reed–Solomon codes, however, this knowledge is not absolutely necessary.
  • So you could jump directly to the chapter  extension fields .


Definition and examples of an algebraic group


For the general definitions of group (and later ring) we assume a set with infinitely many elements:

\mathcal{M} = \{\hspace{0.1cm}z_1,\hspace{0.1cm} z_2,\hspace{0.1cm} z_3 ,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}\}\hspace{0.05cm}.

\text{Definition:}  A  \text{algebraic group}  (\mathcal{G}, +)  is an (arbitrary) subset  \mathcal{G} ⊂ \mathcal{M}  together with an additive linkage ("+") defined between all elements, but only if the following properties are necessarily satisfied:

  • For all  z_i, z_j ∈ \mathcal{G}  holds  (z_i + z_j) ∈ \mathcal{G}   ⇒   Closure–criterion for  "+".
  • There is always an element neutral with respect to addition  N_{\rm A} ∈ \mathcal{G}, so that for all  z_i ∈ \mathcal{G} holds:   z_i +N_{\rm A} = z_i. Given a group of numbers,  N_{\rm A} \equiv 0.
  • For all  z_i ∈ \mathcal{G}  there is also an element inverse with respect to addition  {\rm Inv_A}(z_i) ∈ \mathcal{G}  with property  z_i + {\rm Inv_A}(z_i)= N_{\rm A} .
    For a group of numbers  {\rm Inv_A}(z_i) =- z_i.
  • For all  z_i, z_j, z_k ∈ \mathcal{G}  holds:  z_i + (z_j + z_k)= (z_i + z_j) + z_k   ⇒   Associative law  for  "+".

If in addition for all  z_i, z_j ∈ \mathcal{G}  the commutative law  z_i + z_j= z_j + z_i  is satisfied, one speaks of a commutative group  or an abelian group, named after the Norwegian mathematician  Niels Hendrik Abel.


\text{Examples of algebraic groups:}

(1)  The set of rational numbers is defined as the set of all quotients  I/J  with integers  I  and  J ≠ 0.

This set is a group  (\mathcal{G}, +)  with respect to addition, since
  • for all  a ∈ \mathcal{G}  and  b ∈ \mathcal{G}  also the sum  a+b  belongs again to  \mathcal{G} ,
  • the associative law applies,
  • with  N_{\rm A} = 0  the neutral element of the addition is contained in  \mathcal{G}  and
  • it exists for each  a  the additive inverse  {\rm Inv_A}(a) = -a .
Since moreover the commutative law is fulfilled, it is an abelian group.

(2)  The set of natural numbers   ⇒   \{0, 1, 2, \text{...}\}  is not an algebraic group with respect to addition,

  • since for no single element  z_i  there exists the additive inverse  {\rm Inv_A}(z_i) = -z_i .

(3)  The bounded set of natural numbers   ⇒   \{0, 1, 2, \text{...}\hspace{0.05cm}, q-1\}  on the other hand then satisfies the conditions on a group  (\mathcal{G}, +),

  • if one defines the addition modulo  q .

(4)  On the other hand, \{1, 2, 3, \text{...}\hspace{0.05cm},q\}  is not a group because the neutral element of addition  (N_{\rm A} = 0)  is missing.


Definition and examples of an algebraic ring


According to the  overview graphic  one gets from the group  (\mathcal{G}, +)  by defining a second arithmetic operation – of multiplication  ("\cdot")  – to the ring  (\mathcal{R}, +, \cdot). So you need a multiplication table as well as an addition table for this.

\text{Definition:}  A  \text{algebraic ring}  (\mathcal{R}, +, \cdot) is a subset  \mathcal{R} ⊂ \mathcal{G} ⊂ \mathcal{M}  together with two arithmetic operations defined in this set, addition  ("+")  and multiplication  ("·"). The following properties must be satisfied:

  • In terms of addition, the ring  (\mathcal{R}, +, \cdot)  is an  abelian group  (\mathcal{G}, +).
  • In addition, for all  z_i, z_j ∈ \mathcal{R}  also  (z_i \cdot z_j) ∈ \mathcal{R}   ⇒   Closure–criterion for "\cdot".
  • There is always also an element neutral with respect to multiplication  N_{\rm M} ∈ \mathcal{R}, so that for all  z_i ∈ \mathcal{R}  holds:   z_i \cdot N_{\rm M} = z_i.
    For a number group is always  N_{\rm M} = 1.
  • For all  z_i, z_j, z_k ∈ \mathcal{R}  holds:   z_i + (z_j + z_k)= (z_i + z_j) + z_k   ⇒   Associative law  for  "\cdot ".
  • For all  z_i, z_j, z_k ∈ \mathcal{R} holds:   z_i \cdot (z_j + z_k) = z_i \cdot z_j + z_i \cdot z_k   ⇒   Distributive law  for  "\cdot ".


Further the following agreements shall hold:

  • A ring  (\mathcal{R}, +, \cdot)  is not necessarily commutative. If in fact the commutative law also holds for all elements  z_i, z_j ∈ \mathcal{R}  with respect to multiplication, z_i \cdot z_j= z_j \cdot z_i  is called a  commutative ring in the technical literature.
  • Exists for each element  z_i ∈ \mathcal{R}  except  N_{\rm A}  (neutral element of addition, zero element) an element inverse with respect to multiplication  {\rm Inv_M}(z_i) such that  z_i \cdot {\rm Inv_M}(z_i) = 1  holds, then there is a  division ring .
  • The ring is  free of zero divisors  if from  z_i \cdot z_j = 0  follows necessarily  z_i = 0  or  z_j = 0 . In abstract algebra, a zero divisor of a ring is an element  z_i different from the zero element if there exists an element  z_j \ne 0  such that the product  z_i \cdot z_j = 0 .
  • A commutative ring free of zero divisors is called  integral domain.

\text{Conclusion:} 

Comparing the definitions of  "group",  ring (see above), "field"  and  "Galois field", we recognize that a Galois field  {\rm GF}(q)

  • is a finite field with  q  elements,
  • at the same time as a commutative division ring  and also
  • describes an integral domain



Exercises for the chapter


Aufgabe 2.1: Gruppe, Ring, Körper

Aufgabe 2.1Z: Welche Tabellen beschreiben Gruppen?

Aufgabe 2.2: Eigenschaften von Galoisfeldern

Aufgabe 2.2Z: Galoisfeld GF(5)

Sources

  1. Friedrichs, B.: Kanalcodierung – Grundlagen und Anwendungen in modernen Kommunikationssystemen. Berlin – Heidelberg: Springer, 1996.
  2. Kötter, R.; Mayer, T.; Tüchler, M.; Schreckenbach, F.; Brauchle, J.: Channel Coding. Lecture manuscript, Chair of Communications Engineering, TU Munich, 2008.