Difference between revisions of "Aufgaben:Exercise 3.4: Systematic Convolution Codes"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
+
{{quiz-Header|Buchseite=Channel_Coding/Algebraic_and_Polynomial_Description}}
  
[[File:P_ID2629__KC_A_3_4.png|right|frame|Vorgegebene Filterstrukturen]]
+
[[File:P_ID2629__KC_A_3_4.png|right|frame|Predefined filter structures]]
Man spricht von einem systematischen Faltungscode der Rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$, wenn das Codebit  $x_i^{(1)}$  gleich dem momentan anliegenden Informationsbit  $u_i$  ist.  
+
One speaks of a systematic convolutional code of rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$, if the code bit  $x_i^{(1)}$  is equal to the currently applied information bit  $u_i$ .  
  
Die Übertragungsfunktionsmatrix eines solchen Codes lautet:
+
The transfer function matrix of such a code is:
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Der in der oberen Grafik dargestellte Coder  $\rm A$  ist sicher nicht systematisch, da für diesen  $G^{(1)}(D) ≠ 1$  gilt. Zur Herleitung der Matrix  $\mathbf{G}(D)$  verweisen wir auf ein  [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#Anwendung_der_D.E2.80.93Transformation_auf_Rate.E2.80.931.2Fn.E2.80.93Faltungscoder| früheres Beispiel]], in dem für unseren Standard–Rate–1/2–Coder mit Gedächtnis  $m = 2$  die Übertragungsfunktionsmatrix ermittelt wurde:
+
The encoder  $\rm A$  shown in the upper graph is certainly not systematic, since for this  $G^{(1)}(D) ≠ 1$  holds. To derive the matrix  $\mathbf{G}(D)$  we refer to a  [[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D-transform_to_rate-1. 2Fn-convolution_encoders|"earlier example"]], where for our standard rate 1/2 encoder with memory  $m = 2$  the transfer function matrix was determined:
 
:$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 +  D^2 \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 +  D^2 \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Der Coder  $\rm A$  unterscheidet sich gegenüber diesem Beispiel nur durch Vertauschen der beiden Ausgänge.  
+
The encoder  $\rm A$  differs from this example only by swapping the two outputs.  
*Lautet die Übertragungsfunktionsmatrix eines Codes
+
*If the transfer function matrix of a code is
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
*so gilt für die äquivalente systematische Repräsentation dieses Rate–1/2–Faltungscodes allgemein:
+
then the equivalent systematic representation of this rate 1/2 convolutional code holds in general:
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
In der Teilaufgabe '''(3)''' ist zu prüfen, welcher der systematischen Anordnungen äquivalent zum Coder  $\rm A$  ist?  
+
In subtask '''(3)''', check which of the systematic arrangements is equivalent to encoder  $\rm A$ ?  
*Entweder Coder  $\rm B$,
+
*Either encoder  $\rm B$,
* oder Coder  $\rm C$   
+
*or encoder  $\rm C$   
*oder auch beide.  
+
*or both.  
  
  
Line 34: Line 34:
  
  
''Hinweise:''
+
Hints:  
* Die Aufgabe gehört zum  Kapitel  [[Channel_Coding/Algebraische_und_polynomische_Beschreibung| Algebraische und polynomische Beschreibung]].
+
* This exercise belongs to the chapter  [[Channel_Coding/Algebraic_and_Polynomial_Description| Algebraic and Polynomial Description]].
* Bezug genommen wird insbesondere auf die Seiten 
+
* Reference is made in particular to the pages 
:: [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#.C3.9Cbertragungsfunktionsmatrix_.E2.80.93_Transfer_Function_Matrix|Übertragungsfunktionsmatrix – Transfer Function Matrix]]  sowie 
+
:: [[Channel_Coding/Algebraic_and_Polynomial_Description#Transfer_Function_Matrix|"Transfer Function Matrix"]]  and 
:: [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#.C3.84quivalenter_systematischer_Faltungscode|Äquivalenter systematischer Faltungscode]].
+
:: [[Channel_Coding/Algebraic_and_Polynomial_Description#Equivalent_systematic_convolutional_code|"Equivalent systematic convolutional code"]].
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Übertragungsfunktionsmatrix von &nbsp;$\rm A$?
+
{What is the transfer function matrix of &nbsp;$\rm A$?
 
|type="()"}
 
|type="()"}
 
+ $\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$,
 
+ $\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$,
Line 50: Line 50:
 
- $\mathbf{G}(D) = (1, \ 1 + D + D^2)$.
 
- $\mathbf{G}(D) = (1, \ 1 + D + D^2)$.
  
{Wie lautet die äquivalente systematische Übertragungsfunktionsmatrix?
+
{What is the equivalent systematic transfer function matrix?
 
|type="()"}
 
|type="()"}
 
- $\mathbf{G}_{\rm sys}(D) = (1 + D + D^2, \ 1 + D^2)$,
 
- $\mathbf{G}_{\rm sys}(D) = (1 + D + D^2, \ 1 + D^2)$,
Line 56: Line 56:
 
+ $\mathbf{G}_{\rm sys}(D) = (1, \ (1 + D + D^2)/(1 + D^2))$.
 
+ $\mathbf{G}_{\rm sys}(D) = (1, \ (1 + D + D^2)/(1 + D^2))$.
  
{Welcher Coder ist zu &nbsp;$\rm A$&nbsp; äquivalent und systematisch?
+
{Which encoder is equivalent to &nbsp;$\rm A$&nbsp; and systematic?
 
|type="()"}
 
|type="()"}
- Coder &nbsp;$\rm B$&nbsp;,
+
- Encoder &nbsp;$\rm B$&nbsp;,
+ Coder &nbsp;$\rm C$&nbsp;.
+
+ encoder &nbsp;$\rm C$&nbsp;.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
+
'''(1)'''&nbsp; Correct is the <u>proposed solution 1</u>:
*Der Vorschlag 2 würde sich ergeben, wenn man die beiden Ausgänge vertauscht, also für den im Theorieteil meist betrachteten [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#Anwendung_der_D.E2.80.93Transformation_auf_Rate.E2.80.931.2Fn.E2.80.93Faltungscoder| Rate&ndash;1/2&ndash;Standardcode]].
+
*Proposition 2 would result if the two outputs were swapped, that is, for the [[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D-transform_to_rate-1.2Fn-convolution_encoders|"Rate 1/2 standard code"]] mostly considered in the theory section.
  
*Der Vorschlag 3 gilt für einen systematischen Code &#8658; $\underline{x}^{(1)} = \underline{u}$. Der hier betrachtete Coder &nbsp;$\rm A$&nbsp; weist diese Eigenschaft allerdings nicht auf.
+
*Proposition 3 applies to a systematic code &#8658; $\underline{x}^{(1)} = $\underline{u}$. However, the coder considered here &nbsp;$\rm A$&nbsp; does not exhibit this property.
 
   
 
   
  
  
'''(2)'''&nbsp; Um von einem nichtsystematischen $(n, \ k)$&ndash;Code mit Matrix $\mathbf{G}(D)$ zum äquivalenten systematischen Code &nbsp; &#8658; &nbsp; Matrix $\mathbf{G}_{\rm sys}(D)$ zu gelangen, <br>muss man allgemein $\mathbf{G}(D)$ aufspalten in eine $k &times; k$&ndash;Matrix $\mathbf{T}(D)$ und eine Restmatrix $\mathbf{Q}(D)$.  
+
'''(2)'''&nbsp; To go from a nonsystematic $(n, \ k)$ code with matrix $\mathbf{G}(D)$ to the equivalent systematic code &nbsp; &#8658; &nbsp; matrix $\mathbf{G}_{\rm sys}(D)$, <br> one must generally split $\mathbf{G}(D)$ into a $k &times; k$ matrix $\mathbf{T}(D)$ and a remainder matrix $\mathbf{Q}(D)$.  
  
*Das gewünschte Ergebnis lautet dann mit der $k &times; k$&ndash;Einheitsmatrix $\mathbf{I}_k$:
+
*The desired result is then with the $k &times; k$ identity matrix $\mathbf{I}_k$:
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm I}}_k\hspace{0.05cm} ; \hspace{0.1cm} {\boldsymbol{\rm T}}^{-1}(D) \cdot  {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm I}}_k\hspace{0.05cm} ; \hspace{0.1cm} {\boldsymbol{\rm T}}^{-1}(D) \cdot  {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Wir gehen hier von der $\mathbf{G}(D)$&ndash;Matrix für den Coder &nbsp;$\rm A$&nbsp; aus.  
+
*We assume here the $\mathbf{G}(D)$ matrix for the coder &nbsp;$\rm A$&nbsp;.  
*Wegen $k = 1$ haben hier sowohl $\mathbf{T}(D)$ als auch $\mathbf{Q}(D)$ die Dimension $1 &times; 1$, sind also streng genommen gar keine Matrizen:
+
*Because $k = 1$ here both $\mathbf{T}(D)$ and $\mathbf{Q}(D)$ have dimension $1 &times; 1$, so strictly speaking they are not matrices at all:
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm T}}(D)\hspace{0.05cm} ; \hspace{0.2cm}  {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm T}}(D)\hspace{0.05cm} ; \hspace{0.2cm}  {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big )  
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\boldsymbol{\rm T}}(D) = \big ( 1+D^2\big )\hspace{0.05cm} , \hspace{0.2cm}
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\boldsymbol{\rm T}}(D) = \big ( 1+D^2\big )\hspace{0.05cm} , \hspace{0.2cm}
 
  {\boldsymbol{\rm Q}}(D) = \big ( 1+D+D^2\big )\hspace{0.05cm} .$$
 
  {\boldsymbol{\rm Q}}(D) = \big ( 1+D+D^2\big )\hspace{0.05cm} .$$
  
*Für die beiden Elemente der systematischen Übertragungsfunktionsmatrix erhält man:
+
*For the two elements of the systematic transfer function matrix, we obtain:
 
:$$G^{(1)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm T}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = 1 C,\hspace{0.8cm}
 
:$$G^{(1)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm T}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = 1 C,\hspace{0.8cm}
 
G^{(2)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm Q}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = \frac{1+D+D^2}{1+D^2}$$  
 
G^{(2)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm Q}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = \frac{1+D+D^2}{1+D^2}$$  
Line 89: Line 89:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig ist also der <u>letzte Lösungsvorschlag</u>:  
+
So the <u>last proposed solution</u> is correct:  
*Der Lösungsvorschlag 1 beschreibt keinen systematischen Code.  
+
*Proposed solution 1 does not describe a systematic code.  
*Ein Code entsprechend Lösungsvorschlag 2 ist zwar systematisch, aber nicht äquivalent zum Coder &nbsp;$\rm A$&nbsp; entsprechend der vorgegebenen Schaltung und Übertragungsfunktionsmatrix $\mathbf{G}(D)$.
+
*A code according to solution suggestion 2 is systematic, but not equivalent to the coder &nbsp;$\rm A$&nbsp; according to the given circuit and transfer function matrix $\mathbf{G}(D)$.
  
  
'''(3)'''&nbsp; Die Generatorfunktionsmatrix von Coder &nbsp;$\rm B$&nbsp; lautet:
+
'''(3)'''&nbsp; The generator function matrix of encoder &nbsp;$\rm B$&nbsp; is:
 
:$${\boldsymbol{\rm G}}_{\rm B}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {1+D+D^2} \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}_{\rm B}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {1+D+D^2} \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Dieser Coder ist also nicht äquivalent zum Coder &nbsp;$\rm A$.  
+
*So this encoder is not equivalent to the encoder &nbsp;$\rm A$.  
*Betrachten wir nun den Coder &nbsp;$\rm C$. Hier gilt für das zweite Matrixelement von $\mathbf{G}(D)$:
+
*Let us now consider the encoder &nbsp;$\rm C$. Here the second matrix element of $\mathbf{G}(D)$ holds:
 
:$$w_i \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_i + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm}
 
:$$w_i \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_i + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm}
 
{U}(D) =  W(D) \cdot (1 + D^2 ) \hspace{0.05cm},\hspace{0.8cm}
 
{U}(D) =  W(D) \cdot (1 + D^2 ) \hspace{0.05cm},\hspace{0.8cm}
Line 106: Line 106:
 
:$$\Rightarrow \hspace{0.3cm} G^{(2)}(D) = \frac{{X}^{(2)}(D)}{{U}(D)} = \frac{1+D+D^2}{1+D^2}\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} G^{(2)}(D) = \frac{{X}^{(2)}(D)}{{U}(D)} = \frac{1+D+D^2}{1+D^2}\hspace{0.05cm}.$$
  
Dies entspricht genau dem Ergebnis der Teilaufgabe '''(2)''' &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 2</u>.
+
This corresponds exactly to the result of the subtask '''(2)'''' &nbsp;&#8658;&nbsp; <u>Proposed solution 2</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 18:27, 26 September 2022

Predefined filter structures

One speaks of a systematic convolutional code of rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$, if the code bit  $x_i^{(1)}$  is equal to the currently applied information bit  $u_i$ .

The transfer function matrix of such a code is:

$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm}.$$

The encoder  $\rm A$  shown in the upper graph is certainly not systematic, since for this  $G^{(1)}(D) ≠ 1$  holds. To derive the matrix  $\mathbf{G}(D)$  we refer to a  "earlier example", where for our standard rate 1/2 encoder with memory  $m = 2$  the transfer function matrix was determined:

$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 + D^2 \hspace{0.05cm}\big ) \hspace{0.05cm}.$$

The encoder  $\rm A$  differs from this example only by swapping the two outputs.

  • If the transfer function matrix of a code is
$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm},$$

then the equivalent systematic representation of this rate 1/2 convolutional code holds in general:

$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big ) \hspace{0.05cm}.$$


In subtask (3), check which of the systematic arrangements is equivalent to encoder  $\rm A$ ?

  • Either encoder  $\rm B$,
  • or encoder  $\rm C$ 
  • or both.





Hints:

"Transfer Function Matrix"  and 
"Equivalent systematic convolutional code".


Questions

1

What is the transfer function matrix of  $\rm A$?

$\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$,
$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$,
$\mathbf{G}(D) = (1, \ 1 + D + D^2)$.

2

What is the equivalent systematic transfer function matrix?

$\mathbf{G}_{\rm sys}(D) = (1 + D + D^2, \ 1 + D^2)$,
$\mathbf{G}_{\rm sys}(D) = (1, \ 1 + D + D^2)$,
$\mathbf{G}_{\rm sys}(D) = (1, \ (1 + D + D^2)/(1 + D^2))$.

3

Which encoder is equivalent to  $\rm A$  and systematic?

Encoder  $\rm B$ ,
encoder  $\rm C$ .


Solution

(1)  Correct is the proposed solution 1:

  • Proposition 2 would result if the two outputs were swapped, that is, for the "Rate 1/2 standard code" mostly considered in the theory section.
  • Proposition 3 applies to a systematic code ⇒ $\underline{x}^{(1)} = $\underline{u}$. However, the coder considered here  $\rm A$  does not exhibit this property. '''(2)'''  To go from a nonsystematic $(n, \ k)$ code with matrix $\mathbf{G}(D)$ to the equivalent systematic code   ⇒   matrix $\mathbf{G}_{\rm sys}(D)$, <br> one must generally split $\mathbf{G}(D)$ into a $k × k$ matrix $\mathbf{T}(D)$ and a remainder matrix $\mathbf{Q}(D)$. *The desired result is then with the $k × k$ identity matrix $\mathbf{I}_k$: :'"`UNIQ-MathJax15-QINU`"' *We assume here the $\mathbf{G}(D)$ matrix for the coder  $\rm A$ . *Because $k = 1$ here both $\mathbf{T}(D)$ and $\mathbf{Q}(D)$ have dimension $1 × 1$, so strictly speaking they are not matrices at all: :'"`UNIQ-MathJax16-QINU`"' *For the two elements of the systematic transfer function matrix, we obtain: :'"`UNIQ-MathJax17-QINU`"' :'"`UNIQ-MathJax18-QINU`"' So the <u>last proposed solution</u> is correct: *Proposed solution 1 does not describe a systematic code. *A code according to solution suggestion 2 is systematic, but not equivalent to the coder  $\rm A$  according to the given circuit and transfer function matrix $\mathbf{G}(D)$. '''(3)'''  The generator function matrix of encoder  $\rm B$  is: :'"`UNIQ-MathJax19-QINU`"' *So this encoder is not equivalent to the encoder  $\rm A$. *Let us now consider the encoder  $\rm C$. Here the second matrix element of $\mathbf{G}(D)$ holds:
$$w_i \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_i + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {U}(D) = W(D) \cdot (1 + D^2 ) \hspace{0.05cm},\hspace{0.8cm} x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} w_i + w_{i-1} + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}^{(2)}(D) = W(D) \cdot (1 +D + D^2 )$$
$$\Rightarrow \hspace{0.3cm} G^{(2)}(D) = \frac{{X}^{(2)}(D)}{{U}(D)} = \frac{1+D+D^2}{1+D^2}\hspace{0.05cm}.$$

This corresponds exactly to the result of the subtask (2)'  ⇒  Proposed solution 2.