Difference between revisions of "Aufgaben:Exercise 2.12Z: Reed-Solomon Syndrome Calculation"

From LNTwww
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding}}
 
{{quiz-Header|Buchseite=Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding}}
  
[[File:P_ID2559__KC_T_2_5_Darstellung.png|right|frame|Conversion table for the Galois field  $\rm GF(2^3)$]]
+
[[File:EN_KC_Z_2_5_neu.png|right|frame|$\rm GF(2^3)$  representation as powers, polynomials, vectors]]
As in the  [[Aufgaben:Exercise_2.12:_Decoding_at_RSC_(7,_4,_4)_to_Base_8|"Exercise 2. 12"]]  we consider the Reed–Solomon code  $(7, \, 4, \, 4)_8$ based on the Galois field  ${\rm GF}(q)$  with  $q = 8 = 2^3$ . The graph shows the corresponding conversion table.  
+
As in the  [[Aufgaben:Exercise_2.12:_Decoding_at_RSC_(7,_4,_4)_to_Base_8|"Exercise 2. 12"]]  we consider the Reed–Solomon code  $(7, \, 4, \, 4)_8$  based on the Galois field  ${\rm GF}(q)$  with   $q = 8 = 2^3$.   The graph shows the corresponding conversion table.  
  
Given are the possible code symbols in exponent representation $($potencies of  $\alpha)$  and in polynomial– and coefficient vector representation.
+
Given are the possible code symbols in  
 +
# exponent representation  $($powers of  $\alpha)$   
 +
# polynomialrepresentation,
 +
# coefficient vector representation.
  
Given the received word  $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$. Based on the syndrome
+
* Given the received word   $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$.  
:$$\underline {s} = (s_0, s_1, s_2) = \underline {y}  \cdot { \boldsymbol{\rm H }}^{\rm T}$$
 
  
is to check whether individual symbols of the received vector  $\underline{y}$  were corrupted during transmission. Given is the parity-check matrix  $\mathbf{H}$  of the considered code and its transpose:
+
*Based on the syndrome   $\underline {s} = (s_0, s_1, s_2) = \underline {y}  \cdot { \boldsymbol{\rm H }}^{\rm T}$   it is to check whether individual symbols of the received vector  $\underline{y}$  were corrupted during transmission.  
 +
 
 +
*Given is the parity-check matrix  $\mathbf{H}$  of the considered code and its transpose:
 
:$${ \boldsymbol{\rm H}} =  
 
:$${ \boldsymbol{\rm H}} =  
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 29: Line 33:
  
  
 
+
Hints:  This exercise refers to the section  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD| "Step (A): Evaluation of the syndrome in BDD"]]  of the chapter  "Error coding according to Reed–Solomon coding".
 
 
 
 
 
 
 
 
Hints:
 
* This exercise refers to the page  [[Channel_Coding/Error_Correction_According_to_Reed-Solomon_Coding#Step_.28A.29:_Evaluation_of_the_syndrome_in_BDD| "Step (A): Evaluation of the syndrome in BDD"]]  of the chapter "Error coding according to Reed–Solomon coding".
 
 
   
 
   
  

Revision as of 16:35, 30 October 2022

$\rm GF(2^3)$  representation as powers, polynomials, vectors

As in the  "Exercise 2. 12"  we consider the Reed–Solomon code  $(7, \, 4, \, 4)_8$  based on the Galois field  ${\rm GF}(q)$  with   $q = 8 = 2^3$.   The graph shows the corresponding conversion table.

Given are the possible code symbols in

  1. exponent representation  $($powers of  $\alpha)$ 
  2. polynomialrepresentation,
  3. coefficient vector representation.
  • Given the received word   $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$.
  • Based on the syndrome   $\underline {s} = (s_0, s_1, s_2) = \underline {y} \cdot { \boldsymbol{\rm H }}^{\rm T}$   it is to check whether individual symbols of the received vector  $\underline{y}$  were corrupted during transmission.
  • Given is the parity-check matrix  $\mathbf{H}$  of the considered code and its transpose:
$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm},\hspace{0.4cm} { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^2 \\ \alpha^4 & \alpha^1 & \alpha^{5} \\ \alpha^5 & \alpha^{3} & \alpha^{1} \\ \alpha^6 & \alpha^{5} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$


Hints:  This exercise refers to the section  "Step (A): Evaluation of the syndrome in BDD"  of the chapter  "Error coding according to Reed–Solomon coding".



Questions

1

Received was  $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$. Specify the first element of the syndrome  $\underline{s} = (s_0, \, s_1, \, s_2)$ .

$s_0 = \alpha^4$,
$s_0 = \alpha^5$,
$s_0 = \alpha^6$,
$s_0 = 0, \, 1, \, \alpha, \, \alpha^2$  or  $\alpha^3$.

2

What is the second syndrome element for the same received word?

$s_1 = \alpha^4$,
$s_1 = \alpha^5$,
$s_1 = \alpha^6$,
$s_1 = 0, \, 1, \, \alpha, \, \alpha^2$  or  $\alpha^3$.

3

What is the third syndrome element for the same received word?

$s_2 = \alpha^4$,
$s_2 = \alpha^5$,
$s_2 = \alpha^6$,
$s_2 = 0, \, 1, \, \alpha, \, \alpha^2$ oder $\alpha^3$.

4

Know that the received word at hand  $\underline{y}$  can be decoded correctly. How many symbol errors does the received word contain?

$r \ = \ $


Solution

Conversion tables for the Galois field $\rm GF(2^3)$

(1)  The corresponding equation for syndrome calculation is:

$$\underline {s} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (s_0, s_1, s_2) = \begin{pmatrix} \alpha,0, \alpha^3,0, 1, \alpha,0 \end{pmatrix}\cdot \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^2 \\ \alpha^4 & \alpha^1 & \alpha^{5} \\ \alpha^5 & \alpha^{3} & \alpha^{1} \\ \alpha^6 & \alpha^{5} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$

The first element results in

$$s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot 1 + \alpha^3 \cdot \alpha^2 + 1 \cdot \alpha^4 + \alpha \cdot \alpha^5= \alpha + \alpha^5 + \alpha^4+ \alpha^6$$
$$\Rightarrow\hspace{0.3cm} s_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\alpha) + (\alpha^2 + \alpha+ 1)+ (\alpha^2 + \alpha) + + (\alpha^2 + 1) = \alpha^2 + \alpha = \alpha^4\hspace{0.05cm}.$$

Correct is the proposed solution 1.


(2)  Correspondingly, for the second syndrome element, the proposed solution 2 applies accordingly:

$$s_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot 1 + \alpha^3 \cdot \alpha^4 + 1 \cdot \alpha^1 + \alpha \cdot \alpha^3= \alpha + \alpha^7 + \alpha+ \alpha^4= 1 + \alpha^4 = \alpha^2 + \alpha + 1 = \alpha^5 \hspace{0.05cm}.$$


(3)  To calculate $s_2$ must be multiplied by the last matrix column:

$$s_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot 1 + \alpha^3 \cdot \alpha^6 + 1 \cdot \alpha^5 + \alpha \cdot \alpha^1= \alpha + \alpha^2 + \alpha^5 + \alpha^2=\alpha^5 + \alpha = (\alpha^2 + \alpha + 1) + \alpha = \alpha^2 + 1 = \alpha^5 \hspace{0.05cm}.$$

Correct is the proposed solution 3.


(4)  Due to the calculated syndrome $\underline{s} = (\alpha^4, \, \alpha^5, \, \alpha^6) ≠ 0$ the received word contains at least one symbol error   ⇒   $r > 0$.

  • The present Reed–Solomon–code $(7, \, 4, \, 4)_8 \ \Rightarrow \ d_{\rm min} = 4$ cannot correct more than $t = ⌊d_{\rm min}/2⌋ = 1$ errors.
  • Since the received word can actually be decoded according to the specification,  $\underline{r = 1}$ holds.