Difference between revisions of "Aufgaben:Exercise 1.3: Frame Structure of ISDN"

From LNTwww
 
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1581__Bei_A_1_3_neu.png|right|frame|Frame structure of the  $\rm S_{0}$ interface]]
+
[[File:EN_Bei_A_1_3.png|right|frame|Frame structure of the  $\rm S_{0}$ interface]]
 
The graphic shows the frame structure of the  $\rm S_{0}$ interface.  Each frame of duration  $T_{\rm R}$  contains  $48$  bits, among them:
 
The graphic shows the frame structure of the  $\rm S_{0}$ interface.  Each frame of duration  $T_{\rm R}$  contains  $48$  bits, among them:
 
*$16$  bits for the bearer channel   $\rm B1$  $($light blue$)$,
 
*$16$  bits for the bearer channel   $\rm B1$  $($light blue$)$,

Latest revision as of 16:51, 24 October 2022

Frame structure of the  $\rm S_{0}$ interface

The graphic shows the frame structure of the  $\rm S_{0}$ interface.  Each frame of duration  $T_{\rm R}$  contains  $48$  bits, among them:

  • $16$  bits for the bearer channel  $\rm B1$  $($light blue$)$,
  • $16$  bits for the bearer channel  $\rm B2$  $($dark blue$)$,
  • $4$  bits for the data channel  $\rm D$  $($green$)$.


The required control bits are shown in yellow.

For this exercise,  it is specified that each of the two base channels  $\rm B1$  and  $\rm B2$  should provide a net data rate of  $R_{\rm B} = 64 \ \rm kbit/s$. 

It should also be noted that the bit duration  $T_{\rm B}$  of the uncoded binary signal simultaneously indicates the symbol duration of the  $($modified$)$  AMI code, 

  • which assigns each binary  "$1$"  to the voltage level  $0 \ \rm V$  and
  • alternately represents each binary  "$0$"  with  $+0.75 \ \rm V$  resp.  $–0.75 \ \rm V$. 


The numerical values in the graphic  $($marked in red$)$  indicate an example sequence which is to be converted into voltage levels in subtask  (5)  according to the modified AMI code.

  • Bit number  $48$  contains the so-called  "$\rm L$  bit.
  • This is to be set in subtask  (6)  in such a way that the signal  $s(t)$  becomes DC–free.



Notes:

  • It should also be noted that the first  $47$  bits contain exactly  $22$  "zeros".



Questions

1

What is the frame duration  $($German:  "Rahmendauer"   ⇒   subscript "R"$)$  $T_{\rm R}$?

$T_{\rm R} \ = \ $

$\ \rm µ s$

2

What is the bit duration  $T_{\rm B}$?  Note:  This is equal to the symbol duration after AMI coding.

$T_{\rm B} \ = \ $

$\ \rm µ s $

3

What is the total gross data rate  $R_{\rm gross}$?

$R_{\rm gross} \ = \ $

$\ \rm kbit/s$

4

How many control bits  $(N_{\rm CB})$  are transmitted per frame?

$N_{\rm CB} \ = \ $

5

With which voltage values  $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$  are the bits 10, 11 and 12  (gray shaded block)  represented?

$U_{10} \ = \ $

$\ \rm V $
$U_{11} \ = \ $

$\ \rm V $
$U_{12} \ = \ $

$\ \rm V $

6

What is the voltage value  $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$  of the  $\rm L$  bit at the end?

$U_{48} \ = \ $

$\ \rm V $


Solution

(1)  In each frame,  $16$  bits of the base channels  $\rm B1$  and  $\rm B2$  are transmitted.

  • With the frame duration  $T_{\rm R}$,  the bit rate  $(R_{\rm B} = 64 \ \rm kbit/s)$  of each frame is thus:
$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm µ s}} \hspace{0.05cm}.$$


(2)  Thus,  the following time duration is available for each of the  $48$  bits:

$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm µ s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm µ s}}$$
  • Since in  (modified)  AMI encoding each binary symbol is replaced by a ternary symbol of the same duration,  the symbol duration after AMI encoding is also  $T_{\rm B}$.


(3)  The gross data rate is equal to the reciprocal of the bit duration:

$$R_{\rm gross} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$


(4)  The number of control bits  $\rm (CB)$  is:

$$N_{\rm CB} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
  • These are marked in yellow in the graph.
  • Thus,  the total gross data rate calculated in the last subquestion is composed as follows:
$$R_{\rm gross} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm CB}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$


(5)  Note that the first  "0"  is encoded with positive polarity and all following alternating with  $±0.75 \ {\rm V}$:

  • $U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
  • $ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...} = -0.75 \ {\rm V}$.


It follows further:

  • Bit  $b_{10} = 0$  is represented by  $U_{10} \underline{= -0.75 \ \rm V}$,
  • bit  $b_{11} = 1$  by  $U_{11} \underline{= 0 \ \rm V}$,
  • bit  $b_{12} = 0$  by  $U_{12} \underline{= +0.75 \ \rm V}$.


(6) 

  • The  $\rm L$  bit has the task of keeping the AMI encoded signal  $($over all  $48$  ternary symbols$)$  DC-free.
  • Since the binary symbol  "0"  has occurred  $22$  times  $($i.e.  $11$  times each the voltage values  $+0.75 \ \rm V$  and  $-0.75 \ \rm V)$  and correspondingly  $27$  times the binary symbol  "1"  $($voltage value  $0 \ \rm V)$,  $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$  must be set.