Difference between revisions of "Aufgaben:Exercise 3.10: Metric Calculation"

From LNTwww
Line 2: Line 2:
  
 
[[File:P_ID2681__KC_A_3_10.png|right|frame|Only partially evaluated trellis]]
 
[[File:P_ID2681__KC_A_3_10.png|right|frame|Only partially evaluated trellis]]
In the  [[Channel_Coding/Decoding_of_Convolutional_Codes#Preliminary_remarks_on_the_following_decoding_examples| "theory section"]]  of this chapter, the calculation of the branch metrics  ${\it \Gamma}_i(S_{\mu})$  has been discussed in detail, based on the Hamming distance  $d_{\rm H}(\underline{x}\hspace{0.05cm}', \ \underline{y}_i)$  between the possible code words  $\underline{x}\hspace{0.05cm}' ∈ \{00, \, 01, \, 10, \, 11\}$  and the 2–bit–words  $\underline{y}_i$  received at time  $i$  is based.
+
In the  [[Channel_Coding/Decoding_of_Convolutional_Codes#Preliminary_remarks_on_the_following_decoding_examples| $\text{theory section}$]]  of this chapter,  the calculation of the branch metrics  ${\it \Gamma}_i(S_{\mu})$  has been discussed in detail,  based on the Hamming distance   $d_{\rm H}(\underline{x}\hspace{0.05cm}', \ \underline{y}_i)$   between
 +
*the possible code words   $\underline{x}\hspace{0.05cm}' ∈ \{00, \, 01, \, 10, \, 11\}$   
  
The exercise deals exactly with this topic. In the adjacent graph
+
*and the 2–bit–words  $\underline{y}_i$  received at time  $i$.  
* the considered trellis is shown– valid for the code with rate  $R = 1/2$,  memory  $m = 2$  and  $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$,
 
* are the received words  $\underline{y}_1 = (01), \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ \underline{y}_7 = (11)$  indicated in the rectangles,
 
* are all branch metrics  ${\it \Gamma}_0(S_{\mu}), \hspace{0.05cm}\text{ ...} \hspace{0.05cm}  , \ {\it \Gamma}_4(S_{\mu})$  already entered.
 
  
  
For example, the branch metric  ${\it \Gamma}_4(S_0)$  with  $\underline{y}_4 = (01)$  as the minimum of the two comparison values
+
The exercise deals exactly with this topic.   In the adjacent graph
* ${\it \Gamma}_3(S_0) + d_{\rm H}((00), \ (01)) = 3 + 1 = 4$, and
+
* the considered trellis is shown  – valid for the code with rate  $R = 1/2$,   memory  $m = 2$   and 
* ${\it \Gamma}_3(S_2) + d_{\rm H}((11), \ (01)) = 2 + 1 = 3$.
+
:$$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2),$$
 +
 +
* the received words  $\underline{y}_1 = (01), \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ \underline{y}_7 = (11)$  are indicated in the rectangles,
  
 +
* all branch metrics  ${\it \Gamma}_0(S_{\mu}), \hspace{0.05cm}\text{ ...} \hspace{0.05cm}  , \ {\it \Gamma}_4(S_{\mu})$  are already entered.
  
The surviving branch – here from  ${\it \Gamma}_3(S_2)$  to  ${\it \Gamma}_4(S_0)$  – is drawn solid, the eliminated branch from  ${\it \Gamma}_3(S_0)$  to  ${\it \Gamma}_4(S_0)$  dotted. Red arrows represent the information bit $u_i = 0$, blue arrows $u_i = 1$.
 
  
In the subtask '''(4)''' the relationship between
+
For example,  the branch metric  ${\it \Gamma}_4(S_0)$  with  $\underline{y}_4 = (01)$  as the minimum of the two comparison values
*the  ${\it \Gamma}_i(S_{\mu})$ minimization and
+
* ${\it \Gamma}_3(S_0) + d_{\rm H}((00), \ (01)) = 3 + 1 = 4$,  and
*the  ${\it \Lambda}_i(S_{\mu})$ maximization.
 
  
 +
* ${\it \Gamma}_3(S_2) + d_{\rm H}((11), \ (01)) = 2 + 1 = 3$.
  
shall be worked out. Here, we refer to the nodes&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; as <i>metrics</i>, where the metric increment over the predecessor nodes results from the correlation value&nbsp; $&#9001;\underline{x}_i\hspace{0.05cm}', \, \underline{y}_i &#9002;$&nbsp;. For more details on this topic, see the following theory pages:
 
* [[Channel_Coding/Decoding_of_Convolutional_Codes#Relationship_between_Hamming_distance_and_correlation| "Relationship between Hamming distance and correlation"]]
 
* [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_algorithm_based_on_correlation_and_metrics| "Viterbi algorithm based on correlation and metrics"]]
 
* [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_decision_for_non-terminated_convolutional_codes| "Viterbi decision for non&ndash;terminated convolutional codes"]].
 
  
 +
The surviving branch&nbsp; &ndash; here from &nbsp; ${\it \Gamma}_3(S_2)$ &nbsp; to &nbsp; ${\it \Gamma}_4(S_0)$ &nbsp; &ndash; is drawn solid,&nbsp; the eliminated branch from &nbsp; ${\it \Gamma}_3(S_0)$ &nbsp; to &nbsp; ${\it \Gamma}_4(S_0)$ &nbsp; dotted.&nbsp; Red arrows represent the information bit&nbsp; $u_i = 0$,&nbsp; blue arrows&nbsp; $u_i = 1$.
  
 +
In subtask&nbsp; '''(4)'''&nbsp; shall be worked out the relationship between
 +
*the&nbsp; ${\it \Gamma}_i(S_{\mu})$&nbsp; minimization and
 +
*the&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; maximization.
  
  
 +
Here,&nbsp; we refer to the nodes&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; as&nbsp; "correlation metrics",&nbsp; where the metric increment over the predecessor nodes results from the correlation value&nbsp; $&#9001;\underline{x}_i\hspace{0.05cm}', \, \underline{y}_i &#9002;$.&nbsp; For more details on this topic,&nbsp; see the following theory sections:
 +
:# [[Channel_Coding/Decoding_of_Convolutional_Codes#Relationship_between_Hamming_distance_and_correlation| "Relationship between Hamming distance and correlation"]]
 +
:# [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_algorithm_based_on_correlation_and_metrics| "Viterbi algorithm based on correlation and metrics"]]
 +
:# [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_decision_for_non-terminated_convolutional_codes| "Viterbi decision for non&ndash;terminated convolutional codes"]].
  
  
  
  
Hints:
+
<u>Hints:</u>
 
* The exercise refers to the chapter&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes| "Decoding Convolutional Codes"]].  
 
* The exercise refers to the chapter&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes| "Decoding Convolutional Codes"]].  
* For the time being, the search of surviving paths is not considered. This will be dealt with for the same example in the later&nbsp; [[Aufgaben:Exercise_3.11:_Viterbi_Path_Finding| "Exercise 3.11"]].
+
 
 +
* For the time being,&nbsp; the search of surviving paths is not considered.&nbsp;
 +
 
 +
*This will be dealt with for the same example in the later&nbsp; [[Aufgaben:Exercise_3.11:_Viterbi_Path_Finding| $\text{Exercise 3.11}$]].
 
   
 
   
  
Line 62: Line 69:
 
+ This final value suggests three transmission errors.
 
+ This final value suggests three transmission errors.
  
{Which statements are true for the&nbsp; ${\it \Lambda}_i(S_{\mu})$ evaluation?
+
{Which statements are true for the&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; evaluation?
 
|type="[]"}
 
|type="[]"}
+ The metrics&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; provide the same information as&nbsp; ${\it \Gamma}_i(S_{\mu})$.
+
+ The correlation metrics&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; provide the same information as&nbsp; ${\it \Gamma}_i(S_{\mu})$.
 
+ For all nodes,&nbsp; ${\it \Lambda}_i(S_{\mu}) = 2 \cdot \big [i \, &ndash;{\it \Gamma}_i(S_{\mu})\big ]$.
 
+ For all nodes,&nbsp; ${\it \Lambda}_i(S_{\mu}) = 2 \cdot \big [i \, &ndash;{\it \Gamma}_i(S_{\mu})\big ]$.
 
- For the metric increments,&nbsp; $&#9001; \underline{x}_i', \, \underline{y}_i &#9002; &#8712; \{0, \, 1, \, 2\}$.
 
- For the metric increments,&nbsp; $&#9001; \underline{x}_i', \, \underline{y}_i &#9002; &#8712; \{0, \, 1, \, 2\}$.

Revision as of 14:29, 18 November 2022

Only partially evaluated trellis

In the  $\text{theory section}$  of this chapter,  the calculation of the branch metrics  ${\it \Gamma}_i(S_{\mu})$  has been discussed in detail,  based on the Hamming distance   $d_{\rm H}(\underline{x}\hspace{0.05cm}', \ \underline{y}_i)$   between

  • the possible code words   $\underline{x}\hspace{0.05cm}' ∈ \{00, \, 01, \, 10, \, 11\}$ 
  • and the 2–bit–words  $\underline{y}_i$  received at time  $i$.


The exercise deals exactly with this topic.  In the adjacent graph

  • the considered trellis is shown  – valid for the code with rate  $R = 1/2$,   memory  $m = 2$   and 
$$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2),$$
  • the received words  $\underline{y}_1 = (01), \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ \underline{y}_7 = (11)$  are indicated in the rectangles,
  • all branch metrics  ${\it \Gamma}_0(S_{\mu}), \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ {\it \Gamma}_4(S_{\mu})$  are already entered.


For example,  the branch metric  ${\it \Gamma}_4(S_0)$  with  $\underline{y}_4 = (01)$  as the minimum of the two comparison values

  • ${\it \Gamma}_3(S_0) + d_{\rm H}((00), \ (01)) = 3 + 1 = 4$,  and
  • ${\it \Gamma}_3(S_2) + d_{\rm H}((11), \ (01)) = 2 + 1 = 3$.


The surviving branch  – here from   ${\it \Gamma}_3(S_2)$   to   ${\it \Gamma}_4(S_0)$   – is drawn solid,  the eliminated branch from   ${\it \Gamma}_3(S_0)$   to   ${\it \Gamma}_4(S_0)$   dotted.  Red arrows represent the information bit  $u_i = 0$,  blue arrows  $u_i = 1$.

In subtask  (4)  shall be worked out the relationship between

  • the  ${\it \Gamma}_i(S_{\mu})$  minimization and
  • the  ${\it \Lambda}_i(S_{\mu})$  maximization.


Here,  we refer to the nodes  ${\it \Lambda}_i(S_{\mu})$  as  "correlation metrics",  where the metric increment over the predecessor nodes results from the correlation value  $〈\underline{x}_i\hspace{0.05cm}', \, \underline{y}_i 〉$.  For more details on this topic,  see the following theory sections:

  1. "Relationship between Hamming distance and correlation"
  2. "Viterbi algorithm based on correlation and metrics"
  3. "Viterbi decision for non–terminated convolutional codes".



Hints:

  • For the time being,  the search of surviving paths is not considered. 



Questions

1

What are the branch metrics for time  $i = 5$?

${\it \Gamma}_5(S_0) \ = \ $

${\it \Gamma}_5(S_1) \ = \ $

${\it \Gamma}_5(S_2) \ = \ $

${\it \Gamma}_5(S_3) \ = \ $

2

What are the branch metrics for time  $i = 6$?

${\it \Gamma}_6(S_0) \ = \ $

${\it \Gamma}_6(S_2) \ = \ $

3

What is the final value of this trellis based on  ${\it \Gamma}_i(S_{\mu})$?

It holds  ${\it \Gamma}_7(S_0) = 3$.
This final value suggests one error-free transmission.
This final value suggests three transmission errors.

4

Which statements are true for the  ${\it \Lambda}_i(S_{\mu})$  evaluation?

The correlation metrics  ${\it \Lambda}_i(S_{\mu})$  provide the same information as  ${\it \Gamma}_i(S_{\mu})$.
For all nodes,  ${\it \Lambda}_i(S_{\mu}) = 2 \cdot \big [i \, –{\it \Gamma}_i(S_{\mu})\big ]$.
For the metric increments,  $〈 \underline{x}_i', \, \underline{y}_i 〉 ∈ \{0, \, 1, \, 2\}$.


Solution

(1)  At all nodes $S_{\mu}$ a decision must be made between the two incoming branches. The branch that led to the (minimum) error metric ${\it \Gamma}_5(S_{\mu})$ is then selected in each case. With $\underline{y}_5 = (01)$ one obtains:

$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] = {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 2+0 \right ] \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$

The left graph shows the final evaluated ${\it \Gamma}_i(S_{\mu})$ trellis.

Evaluated trellis diagrams


(2)  At time $i = 6$ the termination is already effective and there are only two branch metrics left. For these one obtains with $\underline{y}_6 = (01)$:

$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$


(3)  The final value results to

$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$

In the BSC model, one can infer from ${\it \Gamma}_7(S_{\mu}) = 3$ that three transmission errors occurred   ⇒   solutions 1 and 3.


(4)  Correct are statements 1 and 2:

  • Maximizing the branch metrics ${\it \Lambda}_i(S_{\mu})$ according to the right sketch in the above graph gives the same result as minimizing the branch metrics ${\it \Gamma}_i(S_{\mu})$ shown on the left. Also, the surviving and deleted branches are identical in both graphs.
  • The given equation is also correct, which is shown here only on the example $i = 7$:
$${\it \Lambda}_7(S_0)) = 2 \cdot \big [i - {\it \Gamma}_7(S_0) \big ] = 2 \cdot \big [7 - 3 \big ] \hspace{0.15cm}\underline{= 8}\hspace{0.05cm}.$$
  • The last statement is false. Rather applies  $〈x_i', \, y_i〉 ∈ \{–2, \, 0, \, +2\}$.


Hints: In "Exercise 3.11", path finding is demonstrable for the same example, assuming ${\it \Lambda}_i(S_{\mu})$–metrics as shown in the right graph.