Difference between revisions of "Theory of Stochastic Signals/Uniformly Distributed Random Variables"

From LNTwww
Line 50: Line 50:
 
''Hinweis:'' In dieser Multimedia–Anwendung wird die Gleichverteilung als „Rechteck” bezeichnet.  
 
''Hinweis:'' In dieser Multimedia–Anwendung wird die Gleichverteilung als „Rechteck” bezeichnet.  
  
 +
==Erzeugung einer Gleichverteilung mit PN-Generatoren==
 +
Die heute verwendeten Zufallsgeneratoren sind meist pseudozufällig. Das bedeutet, dass die erzeugte Folge als das Ergebnis eines festen Algorithmuses eigentlich deterministisch ist, für den Anwender jedoch aufgrund der großen Periodenlänge $P$ als stochastisch erscheint. Mehr hierzu im Kapitel 2.5. 
 +
 +
Für die Systemsimulation haben Pseudozufallsgeneratoren gegenüber echten Zufallsgeneratoren den entscheidenden Vorteil, dass die erzeugten Zufallsfolgen ohne Speicherung reproduzierbar sind, was zum einen den Vergleich verschiedener Systemmodelle ermöglicht und auch die Fehlersuche wesentlich erleichtert. Ein Zufallsgenerator sollte dabei folgende Kriterien erfüllen:
 +
*Die Zufallsgrößen $x_ν$ einer generierten Folge sollten mit sehr guter Näherung gleichverteilt sein. Bei wertdiskreter Darstellung an einem Rechner erfordert dies unter Anderem eine hinreichend ''hohe Bitauflösung,'' zum Beispiel mit 32 oder 64 Bit pro Abtastwert.
 +
*Bildet man aus der sequentiellen Zufallsfolge $〈x_ν〉$ jeweils nichtüberlappende Paare von Zufallsgrößen, beispielsweise $(x_ν, x_{ν+1}), (x_{ν+2}, x_{ν+3})$ ... , so sollten diese ''Tupel'' in einer zweidimensionalen Darstellung innerhalb eines Quadrates ebenfalls gleichverteilt sein.
 +
*Bildet man aus der sequentiellen Folge $〈x_ν〉$ nicht überlappende $n$-''Tupel'' von Zufallsgrößen  ⇒  $(x_ν, ... , x_{ν+n–1}), (x_{ν+n}, ... , x_{ν+2n–1})$ usw., so sollten auch diese innerhalb eines $n$-dimensionalen Würfels möglichst die Gleichverteilung ergeben.
 +
 +
 +
Die erste Forderung bezieht sich ausschließlich auf die ''Amplitudenverteilung'' (WDF) und ist im Allgemeinen leichter zu erfüllen. Die beiden weiteren Forderungen sollen eine „ausreichende Zufälligkeit” der Folge gewährleisten. Sie betreffen die statistische Unabhängigkeit aufeinander folgender Zufallswerte.
  
  

Revision as of 18:53, 29 May 2016

Allgemeine Beschreibung und Definition

Eine Zufallsgröße $x$ bezeichnet man als gleichverteilt, wenn sie nur Werte im Bereich von $x_{\rm min}$ bis $x_{\rm max}$ annehmen kann, und zwar mit gleicher Wahrscheinlichkeit.


Die Grafik zeigt links die Wahrscheinlichkeitsdichtefunktion (abgekürzt WDF) und rechts die Verteilungsfunktion (kurz VTF) einer gleichverteilten Zufallsgröße $x$.

WDF und VTF der Gleichverteilung


Daraus können folgende Eigenschaften abgeleitet werden:

  • Die WDF $f_{\rm x}(x)$ besitzt im Bereich von $x_{\rm min}$ bis $x_{\rm max}$ den konstanten Wert $1/(x_{\rm max} - x_{\rm min})$, wobei an den beiden Bereichsgrenzen für $f_{\rm x}(x)$ jeweils nur der halbe Wert – also der Mittelwert zwischen links- und rechtsseitigem Grenzwert – zu setzen ist.
  • Die Verteilungsfunktion $F_{\rm x}(r)$ steigt im Bereich von $x_{\rm min}$ bis $x_{\rm max}$ linear von 0 auf 1 an.
  • Mittelwert und Streuung haben bei der Gleichverteilung die folgenden Werte:

$$m_{\rm 1} = \frac{\it x_ {\rm max} + \it x_{\rm min}}{2},\hspace{0.5cm} \sigma = \frac{\it x_{\rm max} - \it x_{\rm min}}{2 \sqrt{3}}.$$

  • Bei symmetrischer WDF $(x_{\rm min} = –x_{\rm max})$ erhält man als Sonderfall $m_1 =$ 0 und $σ^2 = x_{\rm max}^2/3.$


Hier sehen Sie zwei Signalverläufe mit gleichförmiger Amplitudenverteilung.

Beispiele gleichverteilter Signale

  • Links ist statistische Unabhängigkeit der einzelnen Abtastwerte vorausgesetzt, das heißt, $x_ν$ kann alle Werte zwischen $x_{\rm min}$ und $x_{\rm max}$ mit gleicher Wahrscheinlichkeit annehmen, und zwar unabhängig von der Vergangenheit $(x_{ν–1}, x_{ν–2}, ...).$
  • Beim rechten Signal $y(t)$ ist diese Unabhängigkeit aufeinanderfolgender Signalwerte nicht mehr gegeben. Vielmehr stellt dieses Sägezahnsignal ein deterministisches Signal dar.


Bedeutung der Gleichverteilung für die Nachrichtentechnik

Die Bedeutung gleichverteilter Zufallsgrößen für die Informations- und Kommunikationstechnik ist darauf zurückzuführen, dass diese WDF–Form aus Sicht der Informationstheorie unter der Nebenbedingung „Spitzenwertbegrenzung” ein Optimum darstellt. Mit keiner anderen Verteilung als der Gleichverteilung erreicht man unter dieser Voraussetzung eine größere differentielle Entropie. Mit dieser Thematik beschäftigt sich das Kapitel 4.1 im Buch „Einführung in die Informationstheorie”.

Daneben sind unter Anderem noch folgende Punkte zu nennen:

  • Die Bedeutung der Gleichverteiltung für die Simulation nachrichtentechnischer Systeme ist darauf zurückzuführen, dass man entsprechende Pseudo–Zufallsgeneratoren relativ einfach realisieren kann, und dass sich daraus andere Verteilungen (zum Beispiel die Gauß–, die Laplace– und die Exponentialverteilung) leicht ableiten lassen (vgl. Kapitel 3.5 bis 3.7).
  • In Bildverarbeitung & Bildcodierung wird häufig vereinfachend mit der Gleichverteilung anstelle der tatsächlichen, meist sehr viel komplizierteren Verteilung des Originalbildes gerechnet, da der Unterschied des Informationsgehaltes zwischen einem natürlichen Bild und dem auf der Gleichverteilung basierenden Modell relativ gering ist.
  • Für die Modellierung übertragungstechnischer Systeme sind gleichverteilte Zufallsgrößen dagegen die Ausnahme. Ein Beispiel für eine tatsächlich (nahezu) gleichverteilte Zufallsgröße ist die Phase bei kreissymmetrischen Störungen, wie sie beispielsweise bei Quadraturmodulationsverfahren auftreten.


Das folgende Tool berechnet unter Anderem die Kenngrößen der Gleichverteilung für beliebige Parameter $x_{\rm min}$ und $x_{\rm max}$: WDF, VTF und Momente spezieller Verteilungen

Hinweis: In dieser Multimedia–Anwendung wird die Gleichverteilung als „Rechteck” bezeichnet.

Erzeugung einer Gleichverteilung mit PN-Generatoren

Die heute verwendeten Zufallsgeneratoren sind meist pseudozufällig. Das bedeutet, dass die erzeugte Folge als das Ergebnis eines festen Algorithmuses eigentlich deterministisch ist, für den Anwender jedoch aufgrund der großen Periodenlänge $P$ als stochastisch erscheint. Mehr hierzu im Kapitel 2.5.

Für die Systemsimulation haben Pseudozufallsgeneratoren gegenüber echten Zufallsgeneratoren den entscheidenden Vorteil, dass die erzeugten Zufallsfolgen ohne Speicherung reproduzierbar sind, was zum einen den Vergleich verschiedener Systemmodelle ermöglicht und auch die Fehlersuche wesentlich erleichtert. Ein Zufallsgenerator sollte dabei folgende Kriterien erfüllen:

  • Die Zufallsgrößen $x_ν$ einer generierten Folge sollten mit sehr guter Näherung gleichverteilt sein. Bei wertdiskreter Darstellung an einem Rechner erfordert dies unter Anderem eine hinreichend hohe Bitauflösung, zum Beispiel mit 32 oder 64 Bit pro Abtastwert.
  • Bildet man aus der sequentiellen Zufallsfolge $〈x_ν〉$ jeweils nichtüberlappende Paare von Zufallsgrößen, beispielsweise $(x_ν, x_{ν+1}), (x_{ν+2}, x_{ν+3})$ ... , so sollten diese Tupel in einer zweidimensionalen Darstellung innerhalb eines Quadrates ebenfalls gleichverteilt sein.
  • Bildet man aus der sequentiellen Folge $〈x_ν〉$ nicht überlappende $n$-Tupel von Zufallsgrößen ⇒ $(x_ν, ... , x_{ν+n–1}), (x_{ν+n}, ... , x_{ν+2n–1})$ usw., so sollten auch diese innerhalb eines $n$-dimensionalen Würfels möglichst die Gleichverteilung ergeben.


Die erste Forderung bezieht sich ausschließlich auf die Amplitudenverteilung (WDF) und ist im Allgemeinen leichter zu erfüllen. Die beiden weiteren Forderungen sollen eine „ausreichende Zufälligkeit” der Folge gewährleisten. Sie betreffen die statistische Unabhängigkeit aufeinander folgender Zufallswerte.