Difference between revisions of "Digital Signal Transmission/Properties of Nyquist Systems"

From LNTwww
Line 32: Line 32:
 
<br>
 
<br>
 
Harry Nyquist hat die Bedingung für eine impulsinterferenzfreie Detektion nicht nur für den Zeitbereich formuliert, sondern 1928 auch das entsprechende Kriterium im Frequenzbereich angegeben.<br>
 
Harry Nyquist hat die Bedingung für eine impulsinterferenzfreie Detektion nicht nur für den Zeitbereich formuliert, sondern 1928 auch das entsprechende Kriterium im Frequenzbereich angegeben.<br>
Erstes Nyquistkriterium: Erfüllt das Spektrum <i>G<sub>d</sub></i>(<i>f</i>) des Detektionsgrundimpulses die Bedingung<br>
+
Erstes Nyquistkriterium: Erfüllt das Spektrum <i>G<sub>d</sub></i>(<i>f</i>) des Detektionsgrundimpulses die Bedingung<br><br>
<math>\sum_{k = -\infty}^{+\infty} G_d \left ( f - \frac{k}{T} \right)=
+
<math>\sum \limits {\it k = -\infty}^{+\infty} G_d \left ( f - \frac{k}{T} \right)=
g_0 \cdot T = {\rm const.} \hspace{0.05cm}, </math><br>
+
g_0 \cdot T = {\rm const.} \hspace{0.05cm}, </math><br><br>
 
so ist <i>g<sub>d</sub></i>(<i>t</i>) ein Nyquistimpuls mit äquidistanten Nulldurchgängen zu den Zeitpunkten   
 
so ist <i>g<sub>d</sub></i>(<i>t</i>) ein Nyquistimpuls mit äquidistanten Nulldurchgängen zu den Zeitpunkten   
 
<i>&nu;T</i> (<i>&nu;</i> &ne; 0) und der Amplitude <i>g<sub>d</sub></i>(<i>t</i> = 0) = <i>g</i><sub>0</sub>. <i>Hinweis</i>: Sie finden den Beweis auf Beweis des ersten Nyquistkriteriums.<br>
 
<i>&nu;T</i> (<i>&nu;</i> &ne; 0) und der Amplitude <i>g<sub>d</sub></i>(<i>t</i> = 0) = <i>g</i><sub>0</sub>. <i>Hinweis</i>: Sie finden den Beweis auf Beweis des ersten Nyquistkriteriums.<br>
Die nachfolgende Grafik zeigt zwei Nyquistspektren. Das Spektrum<br>
+
Die nachfolgende Grafik zeigt zwei Nyquistspektren. Das Spektrum<br><br>
 
<math>G_1(f)  =  \left\{ \begin{array}{c} g_0 \cdot T  \\
 
<math>G_1(f)  =  \left\{ \begin{array}{c} g_0 \cdot T  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
Line 44: Line 44:
 
|f| < {1}/({2T})\hspace{0.05cm}, \\
 
|f| < {1}/({2T})\hspace{0.05cm}, \\
 
|f| > {1}/({2T}) \hspace{0.1cm}  \\
 
|f| > {1}/({2T}) \hspace{0.1cm}  \\
\end{array}</math><br>
+
\end{array}</math><br><br>
erfüllt offensichtlich die oben formulierte Bedingung und zwar mit der kleinstmöglichen Bandbreite. Der dazugehörige Nyquistimpuls <i>g</i><sub>1</sub>(<i>t</i>) = <i>g</i><sub>0</sub> &middot; si(&pi;<i>t</i>/<i>T</i>) klingt sehr langsam ab, nämlich asymptotisch mit 1/<i>t</i>.<br>
+
erfüllt offensichtlich die oben formulierte Bedingung und zwar mit der kleinstmöglichen Bandbreite. Der dazugehörige Nyquistimpuls <i>g</i><sub>1</sub>(<i>t</i>) = <i>g</i><sub>0</sub> &middot; si(&pi;<i>t</i>/<i>T</i>) klingt sehr langsam ab, nämlich asymptotisch mit 1/<i>t</i>.<br><br>
[[File:P_ID1273__Dig_T_1_3_S2_v1.png|Zur Verdeutlichung des ersten Nyquistkriteriums|class=fit]]<br>
+
[[File:P_ID1273__Dig_T_1_3_S2_v1.png|Zur Verdeutlichung des ersten Nyquistkriteriums|class=fit]]<br><br>
Der rechts oben dargestellte Realteil des Spektrums <i>G</i><sub>2</sub>(<i>f</i>) wurde aus dem Rechteckspektrum  <i>G</i><sub>1</sub>(<i>f</i>) durch Verschiebung von Teilstücken um 1/<i>T</i> nach rechts oder links konstruiert. Wegen <br>
+
Der rechts oben dargestellte Realteil des Spektrums <i>G</i><sub>2</sub>(<i>f</i>) wurde aus dem Rechteckspektrum  <i>G</i><sub>1</sub>(<i>f</i>) durch Verschiebung von Teilstücken um 1/<i>T</i> nach rechts oder links konstruiert. Wegen <br><br>
 
<math>\sum_{k = -\infty}^{+\infty} {\rm Re}\left[G_2 \left ( f -
 
<math>\sum_{k = -\infty}^{+\infty} {\rm Re}\left[G_2 \left ( f -
 
\frac{k}{T} \right)\right]= g_0 \cdot T \hspace{0.05cm},
 
\frac{k}{T} \right)\right]= g_0 \cdot T \hspace{0.05cm},
 
\hspace{1cm}\sum_{k = -\infty}^{+\infty} {\rm Im}\left[G_2 \left ( f -
 
\hspace{1cm}\sum_{k = -\infty}^{+\infty} {\rm Im}\left[G_2 \left ( f -
\frac{k}{T} \right)\right]= 0</math><br>
+
\frac{k}{T} \right)\right]= 0</math><br><br>
 
handelt es sich bei <i>G</i><sub>2</sub>(<i>f</i>) ebenfalls um ein Nyquistspektrum. Beim Imaginärteil heben sich die jeweils gleich schraffierten Anteile, die jeweils um 2/<i>T</i> auseinander liegen, auf. Die Angabe des dazugehörigen Nyquistimpulses <i>g</i><sub>2</sub>(<i>t</i>) ist allerdings sehr kompliziert.
 
handelt es sich bei <i>G</i><sub>2</sub>(<i>f</i>) ebenfalls um ein Nyquistspektrum. Beim Imaginärteil heben sich die jeweils gleich schraffierten Anteile, die jeweils um 2/<i>T</i> auseinander liegen, auf. Die Angabe des dazugehörigen Nyquistimpulses <i>g</i><sub>2</sub>(<i>t</i>) ist allerdings sehr kompliziert.
  
  
 
{{Display}}
 
{{Display}}

Revision as of 14:48, 21 November 2016


Erstes Nyquistkriterium im Zeitbereich


Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion des Signals

\(d(t) = \sum \limits_{\it (\nu)} a_\nu \cdot g_d ( t - \nu T)\)

zu den Zeitpunkten νT immer dann, wenn der Detektionsgrundimpuls gd(t)

  • auf den Bereich | t | < T beschränkt ist, was für das Kapitel 1.2 vorausgesetzt wurde, oder
  • äquidistante Nulldurchgänge zu den Zeitpunkten νT aufweist.

Aus Gründen einer möglichst einfachen Darstellung wird im Kapitel 1.3 das Detektionsstörsignal dN(t) als vernachlässigbar klein angenommen.

: Man bezeichnet einen Detektionsgrundimpuls mit den Eigenschaften
\[g_d ( t = \nu T)= 0 \hspace{0.3cm}{\rm{f\ddot{u}r}}\hspace{0.3cm} \nu = \pm 1, \pm 2,\pm 3,\hspace{0.05cm}...\]
als Nyquistimpuls gNyq(t), benannt nach dem Physiker Harry Nyquist.



: Die Grafik zeigt das Detektionssignal d(t) eines solchen Nyquistsystems. Rot gepunktet sind die (gewichteten und verschobenen) Nyquistimpulse aν · gNyq(tνT) eingezeichnet.

Detektionssignal bei Nyquistimpulsformung

Zu den Detektionszeitpunkten gilt d(νT) = aν · gNyq(0), wie aus den blauen Kreisen und dem grünen Raster hervorgeht. Die Nachläufer der vorangegangenen Impulse (ν < 0) sowie die Vorläufer der nachfolgenden Impulse (ν > 0) beeinflussen beim Nyquistsystem die Detektion des Symbols a0 nicht.

Der Vollständigkeit halber sei erwähnt, dass für diese Grafik der Detektionsgrundimpuls

\(g_{\rm Nyq} ( t )= g_0 \cdot {\rm si} \left ( \frac{\pi \cdot t}{T}\right)\cdot {\rm si} \left ( \frac{\pi \cdot t}{2 \cdot T}\right)\)

mit trapezförmigem Spektrum und dem Rolloff–Faktor r = 0.5 zugrunde liegt. Dieser wurde bereits im Kapitel 3 des Buches „Signaldarstellung” behandelt.


Erstes Nyquistkriterium im Frequenzbereich


Harry Nyquist hat die Bedingung für eine impulsinterferenzfreie Detektion nicht nur für den Zeitbereich formuliert, sondern 1928 auch das entsprechende Kriterium im Frequenzbereich angegeben.
Erstes Nyquistkriterium: Erfüllt das Spektrum Gd(f) des Detektionsgrundimpulses die Bedingung

\(\sum \limits {\it k = -\infty}^{+\infty} G_d \left ( f - \frac{k}{T} \right)= g_0 \cdot T = {\rm const.} \hspace{0.05cm}, \)

so ist gd(t) ein Nyquistimpuls mit äquidistanten Nulldurchgängen zu den Zeitpunkten νT (ν ≠ 0) und der Amplitude gd(t = 0) = g0. Hinweis: Sie finden den Beweis auf Beweis des ersten Nyquistkriteriums.
Die nachfolgende Grafik zeigt zwei Nyquistspektren. Das Spektrum

\(G_1(f) = \left\{ \begin{array}{c} g_0 \cdot T \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |f| < {1}/({2T})\hspace{0.05cm}, \\ |f| > {1}/({2T}) \hspace{0.1cm} \\ \end{array}\)

erfüllt offensichtlich die oben formulierte Bedingung und zwar mit der kleinstmöglichen Bandbreite. Der dazugehörige Nyquistimpuls g1(t) = g0 · si(πt/T) klingt sehr langsam ab, nämlich asymptotisch mit 1/t.

Zur Verdeutlichung des ersten Nyquistkriteriums

Der rechts oben dargestellte Realteil des Spektrums G2(f) wurde aus dem Rechteckspektrum G1(f) durch Verschiebung von Teilstücken um 1/T nach rechts oder links konstruiert. Wegen

\(\sum_{k = -\infty}^{+\infty} {\rm Re}\left[G_2 \left ( f - \frac{k}{T} \right)\right]= g_0 \cdot T \hspace{0.05cm}, \hspace{1cm}\sum_{k = -\infty}^{+\infty} {\rm Im}\left[G_2 \left ( f - \frac{k}{T} \right)\right]= 0\)

handelt es sich bei G2(f) ebenfalls um ein Nyquistspektrum. Beim Imaginärteil heben sich die jeweils gleich schraffierten Anteile, die jeweils um 2/T auseinander liegen, auf. Die Angabe des dazugehörigen Nyquistimpulses g2(t) ist allerdings sehr kompliziert.