Difference between revisions of "Aufgaben:Exercise 3.4: Entropy for Different PMF"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Informationstheorie/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen }} [[File:|right|]] ===Fragebogen=== <quiz display…“)
 
Line 3: Line 3:
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID2758__Inf_Z_3_3.png|right|]]
 +
In der ersten Zeile der nebenstehenden Tabelle ist die mit „a” bezeichnete Wahrscheinlichkeitsfunktion angegeben. Für dieses $P_X(X)$ soll  soll in der Teilaufgabe (a) die Entropie
 +
 
 +
$$H_{\rm a}(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ]$$
 +
 
 +
berechnet werden. Da hier der Logarithmus zur Basis 2 verwendet wird, ist die Pseudo–Einheit „bit” anzufügen.
 +
 
 +
In den weiteren Aufgaben sollen jeweils einige Wahrscheinlichkeiten variiert werden und zwar derart, dass sich jeweils die größtmögliche Entropie ergibt:
 +
 
 +
:* Durch geeignete Variation von $p_3$ und $p_4$ kommt man zur maximalen Entropie $H_b(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_2 = 0.2$      $\Rightarrow$ Teilaufgabe (b).
 +
 
 +
:* Durch geeignete Variation von $p_2$ und $p_3$ kommt man zur maximalen Entropie $H_c(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_4 = 0.4$      $\Rightarrow$ Teilaufgabe (c).
 +
 +
:* In der Teilaufgabe (d) sind alle vier Parameter zur Variation freigegeben, die entsprechend der maximalen Entropie $\Rightarrow$  $H_max(X)$  zu bestimmen sind.
 +
 
 +
 
 +
 
 +
 
  
  

Revision as of 17:39, 24 November 2016

P ID2758 Inf Z 3 3.png

In der ersten Zeile der nebenstehenden Tabelle ist die mit „a” bezeichnete Wahrscheinlichkeitsfunktion angegeben. Für dieses $P_X(X)$ soll soll in der Teilaufgabe (a) die Entropie

$$H_{\rm a}(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ]$$

berechnet werden. Da hier der Logarithmus zur Basis 2 verwendet wird, ist die Pseudo–Einheit „bit” anzufügen.

In den weiteren Aufgaben sollen jeweils einige Wahrscheinlichkeiten variiert werden und zwar derart, dass sich jeweils die größtmögliche Entropie ergibt:

  • Durch geeignete Variation von $p_3$ und $p_4$ kommt man zur maximalen Entropie $H_b(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_2 = 0.2$ $\Rightarrow$ Teilaufgabe (b).
  • Durch geeignete Variation von $p_2$ und $p_3$ kommt man zur maximalen Entropie $H_c(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_4 = 0.4$ $\Rightarrow$ Teilaufgabe (c).
  • In der Teilaufgabe (d) sind alle vier Parameter zur Variation freigegeben, die entsprechend der maximalen Entropie $\Rightarrow$ $H_max(X)$ zu bestimmen sind.




Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.