Difference between revisions of "Aufgaben:Exercise 3.4: Simple Phase Modulator"
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1086__Mod_A_3_4.png|right|]] | + | [[File:P_ID1086__Mod_A_3_4.png|right|frame|„Näherungsweiser Phasenmodulator”]] |
− | Die nebenstehende Schaltung erlaubt die näherungsweise Realisierung eines phasenmodulierten Signals. Der | + | Die nebenstehende Schaltung erlaubt die näherungsweise Realisierung eines phasenmodulierten Signals. Der $90^\circ$–Phasenschieber formt aus dem cosinusförmigen Träger $z(t)$ ein Sinussignal gleicher Frequenz, so dass für das modulierte Signal geschrieben werden kann: |
− | $$ s(t) = z(t) + q(t) \cdot \frac{z(t- T_0/4)}{A_{\rm T}} | + | :$$ s(t) = z(t) + q(t) \cdot \frac{z(t- T_0/4)}{A_{\rm T}} |
− | + | = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t) + q(t) \cdot \sin (\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$ | |
− | Der zweite Term beschreibt eine ZSB–AM ohne Träger. Zusätzlich wird der um | + | Der zweite Term beschreibt eine „ZSB–AM ohne Träger”. Zusätzlich wird der um $90^\circ$ phasenverschobene Träger addiert. Bei cosinusförmigem Quellensignal $q(t) = A_{\rm N} \cdot \cos (\omega_{\rm N} \cdot t)$ergibt sich somit: |
− | + | :$$s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t) + A_{\rm N} \cdot \cos (\omega_{\rm N} \cdot t) \cdot \sin (\omega_{\rm T} \cdot t) $$ | |
− | ergibt sich somit: | + | :$$\Rightarrow \hspace{0.3cm}s(t) = A_{\rm T} \cdot \left[\cos (\omega_{\rm T} \cdot t) + \eta \cdot \cos (\omega_{\rm N} \cdot t) \cdot \sin (\omega_{\rm T} \cdot t) \right] \hspace{0.05cm}.$$ |
− | $$s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t) + A_{\rm N} \cdot \cos (\omega_{\rm N} \cdot t) \cdot \sin (\omega_{\rm T} \cdot t) | + | Das Verhältnis $η = A_{\rm N}/A_{\rm T}$ bezeichnen wir als den Modulationsindex; die Trägeramplitude wird im Folgenden zur Vereinfachung $A_{\rm T} = 1$ gesetzt. |
− | $$ = A_{\rm T} \cdot \left[\cos (\omega_{\rm T} \cdot t) + \eta \cdot \cos (\omega_{\rm N} \cdot t) \cdot \sin (\omega_{\rm T} \cdot t) \right] \hspace{0.05cm}.$$ | ||
− | |||
− | Im Gegensatz zur idealen | + | *Im Gegensatz zur [[Modulationsverfahren/Phasenmodulation_(PM)#Signalverl.C3.A4ufe_bei_Phasenmodulation|idealen Phasenmodulation]] unterscheidet sich bei dieser „näherungsweisen Phasenmodulation” $η$ vom Phasenhub $ϕ_{\rm max}$. |
+ | *Außerdem werden Sie erkennen, dass die Hüllkurve $a(t) ≠ 1$ ist. Das bedeutet, dass hier der Phasenmodulation eine unerwünschte Amplitudenmodulation überlagert ist. | ||
− | Berechnet werden sollen in dieser Aufgabe aus der Darstellung des äquivalenten TP–Signals $s_{TP}(t)$ in der komplexen Ebene (Ortskurve) die Hüllkurve $a(t)$ und die Phasenfunktion $ϕ(t)$ | + | Berechnet werden sollen in dieser Aufgabe aus der Darstellung des äquivalenten TP–Signals $s_{TP}(t)$ in der komplexen Ebene (Ortskurve) |
+ | *die Hüllkurve $a(t)$ und | ||
+ | *die Phasenfunktion $ϕ(t)$. | ||
− | '' | + | |
− | $$\arctan(\gamma) \approx \gamma - {\gamma^3}/{3} \hspace{0.05cm}, \hspace{0.3cm} \cos^3(\gamma) ={3}/{4} \cdot \cos(\gamma) +{1}/{4} \cdot \cos(3 \cdot \gamma) \hspace{0.05cm}.$$ | + | Anschließend sollen die Verfälschungen analysiert werden, die sich ergeben, wenn bei diesem nichtidealen PM-Modulator empfangsseitig ein idealer PM-Demodulator eingesetzt wird, der das Sinkensignal $v(t)$ proportional zur Phase $ϕ(t)$ setzt. |
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]]. | ||
+ | *Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Phasenmodulation_(PM)#.C3.84quivalentes_TP.E2.80.93Signal_bei_Phasenmodulation|Äquivalentes Tiefpass-Signal bei Phasenmodulation]]. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | *Zur näherungsweisen Berechnung des Klirrfaktors können Sie folgende Gleichungen benutzen: | ||
+ | :$$\arctan(\gamma) \approx \gamma - {\gamma^3}/{3} \hspace{0.05cm}, \hspace{0.3cm} \cos^3(\gamma) ={3}/{4} \cdot \cos(\gamma) +{1}/{4} \cdot \cos(3 \cdot \gamma) \hspace{0.05cm}.$$ | ||
Line 25: | Line 34: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Berechnen Sie das äquivalente | + | {Berechnen Sie das äquivalente Tiefpass–Signal. Welche Aussage trifft zu? |
|type="[]"} | |type="[]"} | ||
− | - Die Ortskurve $s_{TP}(t)$ ist ein Kreisbogen. | + | - Die Ortskurve $s_{\rm TP}(t)$ ist ein Kreisbogen. |
− | - Die Ortskurve $s_{TP}(t)$ ist eine horizontale Gerade. | + | - Die Ortskurve $s_{\rm TP}(t)$ ist eine horizontale Gerade. |
− | + Die Ortskurve $s_{TP}(t)$ ist eine vertikale Gerade. | + | + Die Ortskurve $s_{\rm TP}(t)$ ist eine vertikale Gerade. |
− | {Berechnen Sie die (normierte) Hüllkurve $a(t)$ für $ | + | {Berechnen Sie die (normierte) Hüllkurve $a(t)$ für $A_{\rm T} = 1$. Wie groß sind deren Minimal– und Maximalwert mit $η = 1$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $a_{\rm min} \ = \ $ { 1 3% } |
− | $ | + | $a_{\rm max} \ = \ $ { 1.414 3% } |
{Berechnen Sie den Maximalwert der Phase $ϕ(t)$ für $η = 1$ und $η = 0.5$. | {Berechnen Sie den Maximalwert der Phase $ϕ(t)$ für $η = 1$ und $η = 0.5$. | ||
|type="{}"} | |type="{}"} | ||
− | $ η = 1: ϕ_{max}$ | + | $η = 1.0\text{:} \ \ \ ϕ_{\rm max} \ = \ $ { 45 3% } $\ \rm Grad$ |
− | $ η = 0.5: ϕ_{max}$ | + | $η = 0.5\text{:} \ \ \ ϕ_{\rm max} \ = \ $ { 26.6 3% } $\ \rm Grad$ |
{Welche Verzerrungen ergeben sich nach idealer Phasendemodulation von $s(t)$? | {Welche Verzerrungen ergeben sich nach idealer Phasendemodulation von $s(t)$? | ||
Line 48: | Line 57: | ||
+ Es treten nichtlineare Verzerrungen auf. | + Es treten nichtlineare Verzerrungen auf. | ||
− | {Berechnen Sie den Klirrfaktor unter Berücksichtigung der auf der Angabenseite genannten trigonometrischen Beziehungen. | + | {Berechnen Sie den Klirrfaktor $K$ unter Berücksichtigung der auf der Angabenseite genannten trigonometrischen Beziehungen. |
|type="{}"} | |type="{}"} | ||
− | $η = 1: K$ | + | $η = 1.0\text{:} \ \ \ K \ = \ $ { 11.1 3% } $\ \text{%}$ |
− | $η = 0.5: K$ | + | $η = 0.5\text{:} \ \ \ K \ = \ $ { 2.2 3% } $\ \text{%}$ |
Revision as of 15:53, 5 July 2017
Die nebenstehende Schaltung erlaubt die näherungsweise Realisierung eines phasenmodulierten Signals. Der $90^\circ$–Phasenschieber formt aus dem cosinusförmigen Träger $z(t)$ ein Sinussignal gleicher Frequenz, so dass für das modulierte Signal geschrieben werden kann:
- $$ s(t) = z(t) + q(t) \cdot \frac{z(t- T_0/4)}{A_{\rm T}} = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t) + q(t) \cdot \sin (\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Der zweite Term beschreibt eine „ZSB–AM ohne Träger”. Zusätzlich wird der um $90^\circ$ phasenverschobene Träger addiert. Bei cosinusförmigem Quellensignal $q(t) = A_{\rm N} \cdot \cos (\omega_{\rm N} \cdot t)$ergibt sich somit:
- $$s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t) + A_{\rm N} \cdot \cos (\omega_{\rm N} \cdot t) \cdot \sin (\omega_{\rm T} \cdot t) $$
- $$\Rightarrow \hspace{0.3cm}s(t) = A_{\rm T} \cdot \left[\cos (\omega_{\rm T} \cdot t) + \eta \cdot \cos (\omega_{\rm N} \cdot t) \cdot \sin (\omega_{\rm T} \cdot t) \right] \hspace{0.05cm}.$$
Das Verhältnis $η = A_{\rm N}/A_{\rm T}$ bezeichnen wir als den Modulationsindex; die Trägeramplitude wird im Folgenden zur Vereinfachung $A_{\rm T} = 1$ gesetzt.
- Im Gegensatz zur idealen Phasenmodulation unterscheidet sich bei dieser „näherungsweisen Phasenmodulation” $η$ vom Phasenhub $ϕ_{\rm max}$.
- Außerdem werden Sie erkennen, dass die Hüllkurve $a(t) ≠ 1$ ist. Das bedeutet, dass hier der Phasenmodulation eine unerwünschte Amplitudenmodulation überlagert ist.
Berechnet werden sollen in dieser Aufgabe aus der Darstellung des äquivalenten TP–Signals $s_{TP}(t)$ in der komplexen Ebene (Ortskurve)
- die Hüllkurve $a(t)$ und
- die Phasenfunktion $ϕ(t)$.
Anschließend sollen die Verfälschungen analysiert werden, die sich ergeben, wenn bei diesem nichtidealen PM-Modulator empfangsseitig ein idealer PM-Demodulator eingesetzt wird, der das Sinkensignal $v(t)$ proportional zur Phase $ϕ(t)$ setzt.
Hinweise:
- Die Aufgabe gehört zum Kapitel Phasenmodulation.
- Bezug genommen wird insbesondere auf die Seite Äquivalentes Tiefpass-Signal bei Phasenmodulation.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Zur näherungsweisen Berechnung des Klirrfaktors können Sie folgende Gleichungen benutzen:
- $$\arctan(\gamma) \approx \gamma - {\gamma^3}/{3} \hspace{0.05cm}, \hspace{0.3cm} \cos^3(\gamma) ={3}/{4} \cdot \cos(\gamma) +{1}/{4} \cdot \cos(3 \cdot \gamma) \hspace{0.05cm}.$$
Fragebogen
Musterlösung
Die Grafik verdeutlicht, dass die Ortskurve $s_{TP}(t)$ nun eine vertikale Gerade ist im Gegensatz zur idealen PM (Kreisbogen) und zur ZSB–AM (horizontale Gerade). Im Folgenden wird $A_T = 1$ gesetzt.
2. Die Hüllkurve ergibt sich aus der zeitabhängigen Zeigerlänge zu
$$a(t) = \sqrt{1 + \eta^2 \cdot \cos^2 (\omega_{\rm N} \cdot t)}$$
$$ \Rightarrow \hspace{0.3cm}a_{\rm min} \hspace{0.15cm}\underline { = 1}, \hspace{0.3cm}a_{\rm max} = \sqrt{1 + \eta^2 }\hspace{0.05cm}.$$
Für $η = 1$ hat amax den Wert $2^{0.5} ≈ 1.414$.
3. Für die Phasenfunktion gilt:
$$\phi(t) = \arctan \frac{{\rm Im}[s_{\rm TP}(t)]}{{\rm Re}[s_{\rm TP}(t)]} = \arctan (\eta \cdot \cos (\omega_{\rm N} \cdot t)) \hspace{0.05cm}.$$
Der Maximalwert tritt beispielsweise zur Zeit $t = 0$ auf und beträgt $ϕ_{max} = arctan(η)$. Für $η = 1$ erhält man $ϕ_{max} = 45°$ (bei idealer PM $57.3°$) und für $η = 0.5$ ergibt sich $ϕ_{max} = 26.6°$ (ideale PM: $28.7°$).
4.Es gilt nicht arctan$(η · cos(γ)) = η · cos(γ)$. Das heißt, dass das Sinkensignal im Gegensatz zum Quellensignal nicht cosinusförmig verläuft. Dies weist auf $\underline{nichtlineare Verzerrungen}$ hin ⇒ $\underline{Vorschlag 3}$.
5. Mit $γ = η · cos(ω_N · t)$ und $arctan(γ) ≈ γ – γ^3/3$ erhält man
$$ \phi(t) = \eta \cdot \cos (\omega_{\rm N} \cdot t) - \frac{\eta^3}{3}\cdot \cos^3 (\omega_{\rm N} \cdot t))=$$
$$ = \eta \cdot \cos (\omega_{\rm N} \cdot t) - \frac{\eta^3}{3}\cdot \left [ \frac{3}{4}\cdot \cos (\omega_{\rm N} \cdot t) + \frac{1}{4}\cdot \cos (3 \omega_{\rm N} \cdot t)\right ] =$$
$$ = \left(\eta - \frac{\eta^3}{4} \right) \cdot \cos (\omega_{\rm N} \cdot t) - \frac{\eta^3}{12}\cdot \cos (3\omega_{\rm N} \cdot t)) \hspace{0.05cm}.$$
Das bedeutet: Bei Verwendung der angegebenen Reihenentwicklung (Terme 5. und höherer Ordnung werden vernachlässigt) ist nur der Klirrfaktor dritter Ordnung von 0 verschieden. Man erhält:
$$K = K_3 = \frac{\eta^3/12}{\eta-\eta^3/4}= \frac{1}{12/\eta^2 -3} \hspace{0.05cm}.$$
Für $η = 1$ ergibt sich der Zahlenwert $K = 1/9 ≈ 11.1%$. Für $η = 0.5$ ist der Klirrfaktor $K = 1/45 ≈ 2.2%$.
Eine Simulation zeigt, dass man durch den Abbruch der Reihe nach dem Term dritter Ordnung einen Fehler macht, der den Klirrfaktor als zu hoch erscheinen lässt. Die per Simulation gewonnenen Werte sind $K ≈ 6%$ (für $η = 1$) und $K ≈ 2%$ (für $η = 0.5$). Der Fehler nimmt also mit wachsendem η mehr als proportional zu.