Difference between revisions of "Aufgaben:Exercise 3.8: Modulation Index and Bandwidth"
m (Guenter verschob die Seite 3.7 Modulationsindex und Bandbreite nach 3.8 Modulationsindex und Bandbreite) |
|
(No difference)
|
Revision as of 16:33, 5 July 2017
Eine harmonische Schwingung der Form $$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N})$$ wird winkelmoduliert und dann das einseitige Betragsspektrum $|S_+(f)|$ ermittelt. Mit der Nachrichtenfrequenz $f_N = 2 kHz$ sind folgende Spektrallinien mit folgenden Gewichten zu erkennen: $$|S_{\rm +}(98\,{\rm kHz})| = |S_{\rm +}(102\,{\rm kHz})| = 1.560\,{\rm V}\hspace{0.05cm},$$ $$|S_{\rm +}(96\,{\rm kHz})| = |S_{\rm +}(104\,{\rm kHz})| = 1.293\,{\rm V}\hspace{0.05cm},$$ $$ |S_{\rm +}(94\,{\rm kHz})| = |S_{\rm +}(106\,{\rm kHz})| = 0.594\,{\rm V}\hspace{0.05cm}.$$ Weitere Spektrallinien folgen mit jeweiligem Frequenzabstand $f_N = 2 kHz$, sind hier jedoch nicht angegeben und können vernachlässigt werden.
Erhöht man die Nachrichtenfrequenz auf $f_N = 4 kHz$, so ergeben sich die dominanten Linien $$|S_{\rm +}(100\,{\rm kHz})| = 2.013\,{\rm V}\hspace{0.05cm},$$ $$|S_{\rm +}(96\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(104\,{\rm kHz})| = 1.494\,{\rm V}\hspace{0.05cm},$$ $$ |S_{\rm +}(92\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(108\,{\rm kHz})| = 0.477\,{\rm V},$$ sowie weitere, vernachlässigbare Diraclinien im Abstand 4 kHz.
Hinweis: Die Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 3.1 und Kapitel 3.2.
Fragebogen
Musterlösung
2. Die angegebene Spektralfunktion lässt aufgrund von Symmetrieeigenschaften auf die Trägerfrequenz $f_T = 100 kHz$ schließen. Da bei $f_N = 2 kHz$ die Spektrallinie bei $f_T = 100 kHz$ verschwindet, ist $η_2 ≈ 2.4$ zu vermuten. Eine Kontrolle der weiteren Impulsgewichte bestätigt das Ergebnis:
$$\frac { |S_{\rm +}(f =102\,{\rm kHz})|}{ |S_{\rm +}(f =104\,{\rm kHz})|} = 1.206,\hspace{0.2cm} \frac { {\rm J}_1(2.4)}{ {\rm J}_2(2.4)}= 1.206 \hspace{0.05cm}.$$
3. Die Gewichte der Diraclinien bei $f_T + n · f_N$ lauten allgemein: $$D_n = A_{\rm T} \cdot { {\rm J}_n(\eta)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_1 = A_{\rm T} \cdot { {\rm J}_1(\eta)}\hspace{0.05cm}.$$ Daraus folgt $A_T = D_1/J_1(η) = 1.560 V/0.520 = 3 V$.
4. Mit der Forderung $\text{K < 1%}$ gilt folgende Faustformel (Carson–Regel):
$$B_{\rm 2} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.15cm}\underline {= 17.6\,{\rm kHz}}\hspace{0.05cm}.$$
Somit stehen dem Empfänger die Fourierkoeffizienten $D_{–4}$, ....,$D_4$ zur Verfügung.
5. Bei Frequenzmodulation gilt allgemein:
$$\eta = \frac{K_{\rm FM} \cdot A_{\rm N}}{ \omega_{\rm N}} \hspace{0.05cm}.$$
Durch Verdopplung der Nachrichtenfrequenz wird also der Modulationsindex halbiert: $η_4 = η_2/2 = 1.2$.
6. Die für $\text{K < 1%}$ erforderliche Kanalbandbreite ergibt sich nach gleicher Rechnung wie unter Punkt d) zu $B_4 = 3.2 · 8 kHz = 25.6 kHz$. Aufgrund des um den Faktor 2 kleineren Modulationsindex genügt es für die Begrenzung des Klirrfaktors auf 1%, die Fourierkoeffizienten $D_{–3}$, ...,$D_3$ zu übertragen.
7.