Difference between revisions of "Aufgaben:Exercise 4.7: Spectra of ASK and BPSK"
Line 50: | Line 50: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''1.''' Der Gleichanteil des unipolaren redundanzfreien Quellensignals beträgt $m_q = s_0/2$. Das Diracgewicht ist somit $B = m_q^2 = s_0^2/4 = 1 V^2$. Ohne diesen Gleichanteil ergibt sich das stochastische Rechtecksignal $q(t) – m_q$ ∈ {$+s_0/2$, $–s_0/2$}. Dieses gleichsignalfreie Signal besitzt den kontinuierlichen LDS–Anteil $(s_0/2)^2 · T · si^2(πfT)$, woraus der gesuchte Wert bei der Frequenz f = 0 ermittelt werden kann: | '''1.''' Der Gleichanteil des unipolaren redundanzfreien Quellensignals beträgt $m_q = s_0/2$. Das Diracgewicht ist somit $B = m_q^2 = s_0^2/4 = 1 V^2$. Ohne diesen Gleichanteil ergibt sich das stochastische Rechtecksignal $q(t) – m_q$ ∈ {$+s_0/2$, $–s_0/2$}. Dieses gleichsignalfreie Signal besitzt den kontinuierlichen LDS–Anteil $(s_0/2)^2 · T · si^2(πfT)$, woraus der gesuchte Wert bei der Frequenz f = 0 ermittelt werden kann: | ||
− | + | ||
+ | |||
'''2.''' Das Spektrum $Z(f)$ eines Cosinussignals $z(t)$ besteht aus zwei Diracfunktionen bei $± f_T$, jeweils mit dem Gewicht 1/2. Das Leistungsdichtespektrum $Φ_z(f)$ besteht ebenfalls aus den beiden Diracfunktionen, nun aber mit jeweiligem Gewicht 1/4. Die Faltung $Φ_q(f) ∗ Φ_z(f)$ ergibt das Leistungsdichtespektrum $Φ_s(f)$ des Sendesignals. Daraus folgt: | '''2.''' Das Spektrum $Z(f)$ eines Cosinussignals $z(t)$ besteht aus zwei Diracfunktionen bei $± f_T$, jeweils mit dem Gewicht 1/2. Das Leistungsdichtespektrum $Φ_z(f)$ besteht ebenfalls aus den beiden Diracfunktionen, nun aber mit jeweiligem Gewicht 1/4. Die Faltung $Φ_q(f) ∗ Φ_z(f)$ ergibt das Leistungsdichtespektrum $Φ_s(f)$ des Sendesignals. Daraus folgt: | ||
− | + | ||
'''Anmerkung:''' Die Leistung pro Bit ergibt sich als das Integral über $Φ_s(f)$: | '''Anmerkung:''' Die Leistung pro Bit ergibt sich als das Integral über $Φ_s(f)$: | ||
− | + | ||
− | + | ||
'''3.''' Bei BPSK ist das Quellensignal $q(t)$ bipolar anzusetzen. Im Leistungsdichtespektrum fehlt deshalb die Diraclinie ⇒ B = 0 und der kontinuierliche LDS–Anteil ist viermal so groß als bei der ASK: | '''3.''' Bei BPSK ist das Quellensignal $q(t)$ bipolar anzusetzen. Im Leistungsdichtespektrum fehlt deshalb die Diraclinie ⇒ B = 0 und der kontinuierliche LDS–Anteil ist viermal so groß als bei der ASK: | ||
− | + | ||
'''4.''' Für die LDS–Parameter des BPSK–Sendesignals gilt analog zur ASK: | '''4.''' Für die LDS–Parameter des BPSK–Sendesignals gilt analog zur ASK: | ||
− | |||
'''5.''' Richtig ist nur die erste Aussage. Bei BPSK (bipolares Quellensignal) beinhaltet $Φ_q(f)$ auch dann keine einzige Diraclinie, wenn $g_q(t)$ von der Rechteckform abweicht. Dagegen beinhaltet das unipolare ASK–Quellensignal unendlich viele Diraclinien bei allen Vielfachen von 1/T. Weitere Informationen hierzu finden Sie bei AKF und LDS bei unipolaren Binärsignalen im Buch „Digitalsignalübertragung”. | '''5.''' Richtig ist nur die erste Aussage. Bei BPSK (bipolares Quellensignal) beinhaltet $Φ_q(f)$ auch dann keine einzige Diraclinie, wenn $g_q(t)$ von der Rechteckform abweicht. Dagegen beinhaltet das unipolare ASK–Quellensignal unendlich viele Diraclinien bei allen Vielfachen von 1/T. Weitere Informationen hierzu finden Sie bei AKF und LDS bei unipolaren Binärsignalen im Buch „Digitalsignalübertragung”. |
Revision as of 19:55, 4 January 2017
Die Sendesignale von ASK (Amplitude Shift Keying) und BPSK (Binary Phase Shift Keying) können beide in der Form $s(t) = q(t) · z(t)$ dargestellt werden, wobei z(t) eine harmonische Schwingung mit der Frequenz $f_T$ und der Amplitude 1 darstellt. Die Trägerphase $ϕ_T$ ist für die hier betrachteten Leistungsdichtespektren nicht von Bedeutung.
Bei ASK sind unipolare Amplitudenkoeffizienten – das heißt: $a_ν ∈ {0, 1}$ – des Quellensignals $$ q(t) = \sum_{\nu = - \infty}^{+\infty}a_\nu \cdot g_q (t - \nu \cdot T)$$ anzusetzen, während im Fall der BPSK $a_ν$ ∈ {–1, +1} zu berücksichtigen ist. Die Quelle ist jeweils redundanzfrei, was bedeutet, dass die beiden möglichen Symbole ±1 gleichwahrscheinlich sind und die Symbole statistisch voneinander unabhängig.
In der Grafik sind die Leistungsdichtespektren $Φ_q(f)$ und $Φ_s(f)$ von Quellensignal und Sendesignal angegeben, die sich bei einem NRZ–Rechteckimpuls $g_q(t)$ mit der Amplitude $s_0 = 2 V$ und der Dauer $T = 1 μs$ ergeben. Damit lautet die Spektralfunktion: $$G_q(f) = s_0 \cdot T \cdot {\rm si}(\pi f T)\hspace{0.05cm}.$$ Zu bestimmen sind in dieser Aufgabe die Konstanten A, B, C und D für ASK und BPSK.
Hinweis: Die Aufgabe bezieht sich auf das Kapitel 4.2 dieses Buches sowie auf das Kapitel 2.1 im Buch „Digitalsignalübertragung”.
Fragebogen
Musterlösung