Difference between revisions of "Mobile Communications/Physical Layer for LTE"
Line 86: | Line 86: | ||
*Diese Informationen werden dann als <i>Channel Quality Indicator</i> (CQI) bzw. als <i>Rank Indicator</i> (RI) ebenfalls über den PUSCH übertragen.<br><br> | *Diese Informationen werden dann als <i>Channel Quality Indicator</i> (CQI) bzw. als <i>Rank Indicator</i> (RI) ebenfalls über den PUSCH übertragen.<br><br> | ||
+ | |||
+ | == Physikalische Kanäle im Downlink (1) == | ||
+ | <br> | ||
+ | Im Gegensatz zum Uplink verwendet LTE im Downlink – also bei der Übertragung von der Basisstation zum Endgerät – das Vielfachzugriffsverfahren <b>OFDMA</b>. Entsprechend wurden vom 3GPP–Konsortium hierfür folgende physikalische Kanäle spezifiziert: | ||
+ | *<i>Physical Downlink Shared Channel</i> (PDSCH),<br> | ||
+ | |||
+ | *<i>Physical Downlink Control Channel</i> (PDCCH),<br> | ||
+ | |||
+ | *<i>Physical Control Format Indicator Channel</i> (PCFICH),<br> | ||
+ | |||
+ | *<i>Physical Hybrid ARQ Indicator Channel</i> (PHICH),<br> | ||
+ | |||
+ | *<i>Physical Broadcast Channel</i> (PBCH),<br> | ||
+ | |||
+ | *<i>Physical Multicast Channel</i> (PMCH).<br><br> | ||
+ | |||
+ | Die Nutzdaten werden über den PDSCH übertragen. Die Ressourcenzuweisung geschieht sowohl im Zeitbereich (mit einer Auflösung von 1 ms) als auch im Frequenzbereich (Auflösung: 180 kHz). Aufgrund der Verwendung von OFDMA als Übertragungsverfahren hängt die individuelle Geschwindigkeit jedes Nutzers von der Anzahl der zugewiesenen Ressourcenblöcke (à 180 kHz) ab. Ein <i>eNodeB</i> vergibt die Ressourcen bezogen auf die Kanalqualität jedes einzelnen Nutzers.<br> | ||
+ | |||
+ | Im PDCCH sind alle Informationen bezüglich der Zuweisung von Ressourcenblöcken bzw. Bandbreite sowohl für den Uplink als auch für den Downlink enthalten. Ein Endgerät erhält dadurch Informationen, wie viele Ressourcen zur Verfügung stehen.<br> | ||
+ | |||
+ | {{Beispiel}}''':''' | ||
+ | [[File:P ID2287 LTE T 4 4 S3a v2.png|rahmenlos|rechts|Aufteilung zwischen PDCCH und PDSCH im LTE-Downlink]] | ||
+ | |||
+ | Die Grafik zeigt beispielhaft die Aufteilung zwischen den Kanälen PDCCH und PDSCH: | ||
+ | *Der PDCCH kann pro Subframe bis zu vier Symbole belegen (in der Grafik: zwei).<br> | ||
+ | |||
+ | *Somit verbleiben für die Nutzdaten (also für den Kanal PDSCH) zwölf Zeitschlitze.<br><br><br><br><br><br><br><br>{{end}}<br> | ||
+ | |||
+ | Die weiteren physikalischen Kanäle des LTE–Downlinks werden auf der nächsten Seite beschrieben.<br> | ||
+ | |||
+ | == Physikalische Kanäle im Downlink (2) == | ||
+ | <br> | ||
+ | Die Beschreibung der physikalischen Kanäle des LTE–Downlinks wird fortgesetzt: Über den Kanal PCFICH wird dem Endgerät mitgeteilt, wie viele Symbole den Kontrollinformationen des <b>PDCCH</b> zuzuordnen sind. Sinn dieser dynamischen Aufteilung zwischen Kontroll– und Nutzdaten ist folgender: | ||
+ | *Einerseits können auf diese Weise viele Nutzer mit jeweils nur geringer Datenrate unterstützt werden. Dieses Szenario benötigt eine größere Abstimmung, das heißt, in diesem Fall müsste der <b>PDCCH</b> drei oder vier Symbole umfassen.<br> | ||
+ | |||
+ | *Andererseits kann man den durch <b>PDCCH</b> bedingten Overhead soweit reduzieren, dass bei wenigen gleichzeitigen Nutzern diesen eine hohe Datenrate gewährt werden kann.<br><br> | ||
+ | |||
+ | Über den PDCCH hinaus werden auch im Downlink Referenzsymbole benötigt, um die Kanalqualität zu schätzen und den <i>Channel Quality Indicator</i> (CQI) zu berechnen. Diese Referenzsymbole sind auf die Unterträger (verschiedene Frequenzen) bzw. Symbole (unterschiedliche Zeiten) verteilt, wie die folgende Grafik zeigt.<br> | ||
+ | |||
+ | [[File:P ID2288 LTE T 4 4 S3b v1.png|Verteilung der Referenzsymbole im Downlink|class=fit]]<br> | ||
+ | |||
+ | Zu den anderen physikalischen Kanäle des LTE–Downlinks ist anzumerken: | ||
+ | *Die einzige Aufgabe des Downlink–Kanals PHICH (<i>Physical Hybrid ARQ Indicator Channel</i>) ist es zu signalisieren, ob ein im Uplink verschicktes Paket angekommen ist.<br> | ||
+ | |||
+ | *Über den Broadcast–Kanal PBCH (<i>Physical Broadcast Channel</i>) versenden die Basisstationen ungefähr alle 40 Millisekunden an alle mobilen Endgeräte in der Funkzelle Systeminformationen mit Betriebsparameter sowie Synchronisationssignale, die zur Anmeldung im Netz benötigt werden.<br> | ||
+ | |||
+ | *Einen ähnlichen Zweck hat der Multicast–Kanal PMCH (<i>Physical Multicast Channel</i>), worüber Informationen für sogenannte Multicast–Übertragungen – zu mehreren Empfängern gleichzeitig – gesendet werden. Es kann sich zum Beispiel um das in einem zukünftigen Release geplanten mobilen Fernsehen via LTE oder um Ähnliches handeln.<br><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
Revision as of 14:19, 7 January 2017
Contents
Allgemeine Beschreibung (1)
Die physikalische Schicht (englisch: Physical Layer) ist die unterste Schicht im OSI–Schichtenmodell der Internationalen Organisation für Normung (ISO), die man auch als Bitübertragungsschicht bezeichnet. Sie beschreibt die physikalische Übertragung der Bitfolgen bei LTE und die Funktionsweise der verschiedenen Kanäle gemäß der 3GPP–Spezifikation. Alle Spezifikationen sind dabei sowohl für FDD als auch für TDD gültig.
Die Grafik zeigt die drei Schichten der LTE–Protokollarchitektur. Die Kommunikation zwischen den einzelnen Schichten findet über drei verschiedene Arten von Kanälen statt:
- Logische Kanäle,
- Transportkanäle,
- Physikalische Kanäle.
In diesem Kapitel geht es hauptsächlich um die Kommunikation zwischen Sender und Empfänger in der untersten, in der Grafik rot hervorgehobenen physikalischen Schicht. Grundsätzlich ist anzumerken:
- Genau wie das Internet verwendet LTE ausschließlich eine paketbasierte Übertragung, ohne einem einzelnen Nutzer spezifisch Ressourcen zuzuweisen.
- Das Design der LTE–Bitübertragungsschicht wird demzufolge durch das Prinzip der dynamisch zugewiesenen Netzressourcen geprägt.
- Die Bitübertragungsschicht spielt eine Schlüsselrolle bei der effizienten Zuordnung und Ausnutzung der vorhandenen Systemressourcen.
Allgemeine Beschreibung (2)
Entsprechend der Grafik auf der letzten Seite kommuniziert die physikalische Schicht mit
- dem Block Medium Access Control (MAC) und tauscht dabei über sogenannte Transportkanäle Informationen über die Benutzer und die Regelung bzw. Kontrolle des Netzes aus,
- dem Block Radio Resource Control (RRC), wobei hier laufend Kontrollbefehle und Messungen ausgetauscht werden, um die Übertragung an die Kanalqualität anzupassen.
Die Komplexität der LTE–Übertragung soll durch die folgende Grafik angedeutet werden, die direkt vom European Telecommunications Standards Institute (ETSI) übernommen wurde. Sie zeigt die Kommunikation zwischen den einzelnen Schichten (Kanälen) und gilt ausschließlich für den Downlink.
Auf den nächsten Seiten werden die physikalische Schicht und die physikalischen Kanäle etwas genauer betrachtet, wobei wir zwischen Uplink und Downlink unterscheiden, uns aber nur auf das Wesentliche beschränken. In Wirklichkeit übernehmen die einzelnen Kanäle noch eine Reihe weiterer Funktionen, deren Beschreibung aber den Umfang dieses Tutorials sprengen würde. Wer interessiert ist, findet eine detaillierte Beschreibung zum Beispiel in Holma, H.; Toskala, A.: LTE for UMTS – OFDMA and SC–FDMA Based Radio Access. Wiley & Sons, 2009.
Physikalische Kanäle im Uplink (1)
LTE verwendet im Uplink – Übertragung vom Endgerät zur Basisstation – das Vielfachzugriffsverfahren SC–FDMA. Dementsprechend existieren in der 3GPP–Spezifikation folgende physikalische Kanäle:
- Physical Uplink Shared Channel (PUSCH),
- Physical Random Access Channel (PRACH),
- Physical Uplink Control Channel (PUCCH).
Die Nutzdaten werden im physikalischen Kanal PUSCH übertragen. Die Übertragungsgeschwindigkeit hängt davon ab, wie viel Bandbreite dem jeweiligen Nutzer in diesem Moment zur Verfügung steht. Die Übertragung basiert auf dynamisch zugeordneten Ressourcen in Zeit– und Frequenzbereich mit einer Auflösung von einer Millisekunde bzw. 180 kHz. Diese Zuordnung wird durch den Scheduler in der Basisstation (eNodeB) vorgenommen. Ohne Anweisung der Basisstation kann ein Endgerät keinerlei Daten übertragen.
Die Ausnahme bildet dabei die Verwendung des physikalischen Kanals PRACH, dem einzigen Kanal im LTE–Uplink mit nicht–synchronisierter Übertragung. Eine wesentliche Aufgabe dieses Kanals ist die Anforderung einer Erlaubnis, über einen der beiden anderen physikalischen Kanäle Daten versenden zu dürfen. Durch das Versenden eines Cyclic Prefix und einer Signatur auf dem PRACH werden Endgerät und Basisstation synchronisiert und sind damit bereit für weitere Übertragungen.
Der dritte Uplink–Kanal PUCCH wird ausschließlich zur Übertragung von Kontrollsignalen verwendet. Darunter versteht man
- positive und negative Empfangsbestätigungen (ACK/NACK),
- Anfragen nach wiederholter Übertragung (im Falle eines NACK), sowie
- den Austausch von Informationen über die Kanalqualität zwischen Endgerät und Basisstation.
Die Beschreibung der physikalischen Kanäle des LTE–Uplinks wird auf der nächsten Seite fortgesetzt.
Physikalische Kanäle im Uplink (2)
Werden gleichzeitig Nutzdaten vom Endgerät zur Basisstation gesendet, so kann die Übertragung solcher Kontrollsignale ebenfalls über den PUSCH erfolgen. Sind keine Nutzdaten zu übertragen, wird dagegen PUCCH verwendet.
Eine gleichzeitige Verwendung von PUSCH und PUCCH ist aufgrund von Einschränkungen durch das Einträger–Übertragungsschemas SC–FDMA nicht möglich. Hätte man für alle Kontrollinformationen nur einen Shared Channel gewählt, so hätte man sich entscheiden müssen zwischen
- zwischenzeitlichen Problemen bei der Nutzdatenübertragung, oder
- dauerhaft zu wenige Ressourcen für die Kontrollinformationen.
Die Informationen über die Kanalqualität werden mit Hilfe sogenannter Referenzsymbolen gewonnen. Als Indikatoren für die Kanalqualität werden diese Informationen dann versendet
- zum Channel Quality Indicator (CQI), und
- zum Rank Indicator (RI).
Eine detaillierte Erklärung zur Qualitätsgewährleistung findet sich zum Beispiel in Homayounfar, K.; Rohani, B.: CQI Measurement and Reporting in LTE: A New Framework.
IEICE Technical Report, Vol. 108, No. 445, 2009 und Holma, H.; Toskala, A.: LTE for UMTS – OFDMA and SC–FDMA Based Radio Access. Wiley & Sons, 2009.
Die Referenzsymbole bzw. Kanalqualitätsinformationen sind im PUSCH entsprechend der obigen Grafik verteilt. Diese beschreibt die Anordnung der Nutzinformatiom und der Signalisierungsdaten in einem „virtuellen” Unterträger.
- Virtuell deshalb, weil es ja bei SC–FDMA keine Unterträger gibt wie bei OFDMA.
- Die Referenzsymbole sind notwendig, um die Kanalqualität zu schätzen.
- Diese Informationen werden dann als Channel Quality Indicator (CQI) bzw. als Rank Indicator (RI) ebenfalls über den PUSCH übertragen.
Physikalische Kanäle im Downlink (1)
Im Gegensatz zum Uplink verwendet LTE im Downlink – also bei der Übertragung von der Basisstation zum Endgerät – das Vielfachzugriffsverfahren OFDMA. Entsprechend wurden vom 3GPP–Konsortium hierfür folgende physikalische Kanäle spezifiziert:
- Physical Downlink Shared Channel (PDSCH),
- Physical Downlink Control Channel (PDCCH),
- Physical Control Format Indicator Channel (PCFICH),
- Physical Hybrid ARQ Indicator Channel (PHICH),
- Physical Broadcast Channel (PBCH),
- Physical Multicast Channel (PMCH).
Die Nutzdaten werden über den PDSCH übertragen. Die Ressourcenzuweisung geschieht sowohl im Zeitbereich (mit einer Auflösung von 1 ms) als auch im Frequenzbereich (Auflösung: 180 kHz). Aufgrund der Verwendung von OFDMA als Übertragungsverfahren hängt die individuelle Geschwindigkeit jedes Nutzers von der Anzahl der zugewiesenen Ressourcenblöcke (à 180 kHz) ab. Ein eNodeB vergibt die Ressourcen bezogen auf die Kanalqualität jedes einzelnen Nutzers.
Im PDCCH sind alle Informationen bezüglich der Zuweisung von Ressourcenblöcken bzw. Bandbreite sowohl für den Uplink als auch für den Downlink enthalten. Ein Endgerät erhält dadurch Informationen, wie viele Ressourcen zur Verfügung stehen.
Die Grafik zeigt beispielhaft die Aufteilung zwischen den Kanälen PDCCH und PDSCH:
- Der PDCCH kann pro Subframe bis zu vier Symbole belegen (in der Grafik: zwei).
- Somit verbleiben für die Nutzdaten (also für den Kanal PDSCH) zwölf Zeitschlitze.
Die weiteren physikalischen Kanäle des LTE–Downlinks werden auf der nächsten Seite beschrieben.
Physikalische Kanäle im Downlink (2)
Die Beschreibung der physikalischen Kanäle des LTE–Downlinks wird fortgesetzt: Über den Kanal PCFICH wird dem Endgerät mitgeteilt, wie viele Symbole den Kontrollinformationen des PDCCH zuzuordnen sind. Sinn dieser dynamischen Aufteilung zwischen Kontroll– und Nutzdaten ist folgender:
- Einerseits können auf diese Weise viele Nutzer mit jeweils nur geringer Datenrate unterstützt werden. Dieses Szenario benötigt eine größere Abstimmung, das heißt, in diesem Fall müsste der PDCCH drei oder vier Symbole umfassen.
- Andererseits kann man den durch PDCCH bedingten Overhead soweit reduzieren, dass bei wenigen gleichzeitigen Nutzern diesen eine hohe Datenrate gewährt werden kann.
Über den PDCCH hinaus werden auch im Downlink Referenzsymbole benötigt, um die Kanalqualität zu schätzen und den Channel Quality Indicator (CQI) zu berechnen. Diese Referenzsymbole sind auf die Unterträger (verschiedene Frequenzen) bzw. Symbole (unterschiedliche Zeiten) verteilt, wie die folgende Grafik zeigt.
Zu den anderen physikalischen Kanäle des LTE–Downlinks ist anzumerken:
- Die einzige Aufgabe des Downlink–Kanals PHICH (Physical Hybrid ARQ Indicator Channel) ist es zu signalisieren, ob ein im Uplink verschicktes Paket angekommen ist.
- Über den Broadcast–Kanal PBCH (Physical Broadcast Channel) versenden die Basisstationen ungefähr alle 40 Millisekunden an alle mobilen Endgeräte in der Funkzelle Systeminformationen mit Betriebsparameter sowie Synchronisationssignale, die zur Anmeldung im Netz benötigt werden.
- Einen ähnlichen Zweck hat der Multicast–Kanal PMCH (Physical Multicast Channel), worüber Informationen für sogenannte Multicast–Übertragungen – zu mehreren Empfängern gleichzeitig – gesendet werden. Es kann sich zum Beispiel um das in einem zukünftigen Release geplanten mobilen Fernsehen via LTE oder um Ähnliches handeln.